
Server-driven Outbound Web-application Sandboxing
FP7-ICT-2009-5, Project No. 256964

https://www.websand.eu

Deliverable D4.3
Secure Composition Policies and

Server-driven Enforcement

Abstract
This deliverable reports on the end-to-end enforcement of secure composition
policies in WebSand. The report investigates the problem of insecure script
inclusions, and describes and discusses the developed techniques to achieve
server-driven client-side enforcement.

Deliverable details
Deliverable version: v1.0 Classification: public
Date of delivery: 30.06.2013 Due on: M33
Editors: Lieven Desmet and Frank Piessens Total pages: 158

List of Contributors:
Pieter Agten, Yoran Brondsema, Ping Chen, Lieven Desmet, Martin Johns,
Wouter Joosen, Nils Kunze, Jonas Magazinius, Martín Ochoa, Jan Tobias
Mühlberger, Nick Nikiforakis, Pieter Philippaerts, Frank Piessens, Phu H.
Phung, Andrei Sabelfeld, David Sands, Steven Van Acker

Project details
Start date: October 01, 2010 Duration: 36 months
Project Coordinator: Martin Johns
Partners: SAP, Siemens, CHALMERS, KUL, UNI PASSAU

https://www.websand.eu
https://www.websand.eu

D4.3: Secure Composition Policies and Server-driven Enforcement 2/158

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 3/158

Document revision history
Responsible Date

Integration of section 2 Lieven Desmet June 4, 2013
Integration of section 3 Lieven Desmet June 6, 2013
Integration of section 4 Lieven Desmet June 10, 2013
Integration of section 6 Lieven Desmet June 18, 2013
Integration of section 5 Martin Johns June 21, 2013
Initial revision Lieven Desmet and Frank Piessens June 23, 2013
Review Sebastian Lekies June 28, 2013
Final version Lieven Desmet and Frank Piessens June 28, 2013

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 4/158

Executive Summary
Modern web applications strongly rely on JavaScript to deliver highly respon-
sive user interfaces, and to enrich the website with additional functionality.
To do so, a web developer can integrate in-house developed JavaScript li-
braries, or can simply rely on relevant third-party JavaScript libraries.

In this deliverable, we will explore the risks involved in integrating third-
party JavaScript, and discuss the server-driven enforcement mechanisms de-
veloped in work package 4 of the WebSand project to securely integrate
untrusted third-party JavaScript code as part of a website.

We start with a brief summary of the web security model and the impact
of this security model on integrating third-party JavaScript in a website. In
addition, we assess the use of script inclusion on the top 10,000 most popular
websites to illustrate the widespreadness of this type of code assembly on the
web, and the urge to securely compose JavaScript coming from potentially
untrusted third-party providers.

Based on the security-sensitive operations available in the JavaScript con-
text, we propose the least-privilege secure composition policies. Moreover,
this deliverable also investigates how the richness of JavaScript APIs not
only affects the security but also the privacy of end-users in web fingerprint-
ing frameworks.

We propose and discuss a variety of enforcement techniques, as they have
been developed within WebSand. These enforcement techniques range from
a security-enhanced browser (WebJail) to JavaScript security architectures
that runs on top of mainstream browsers (Two-tier sandbox, JSand and
PreparedJS). The implementation strategies mainly vary in their mode of
deployment, but also make different trade-offs in terms of legacy support,
precision, efficiency and maintainability.

We selected JSand as most promising technique for the server-driven en-
forcement. To this extent, we have further matured the JSand prototype
implementation to support a representative selection of DOM operations,
and applied it to the most frequently used third-party scripts.

The server-driven enforcement is successfully realized and works as fol-
lows. While processing a web request at the server-side, the client-side code
to set up the security architecture and the secure composition policy are
pushed towards the browser as part of the web page. Before loading the
third-party JavaScript code in the browser environment, the JavaScript se-
curity architecture is set up, and a script-specific sandbox environment is
created based on the provided secure composition policy. Once fully config-
ured, the third-party JavaScript code is loaded in the sandbox environment
and securely executed.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 5/158

Contents
1 Introduction 9

1.1 Web security model . 9
1.1.1 Integration of scripts 10
1.1.2 JavaScript inclusions: assessing the state of practice . . 10

1.2 Secure composition policies . 11
1.3 Enforcing secure composition policies 12

1.3.1 WebJail . 13
1.3.2 Two-tier sandbox . 13
1.3.3 JSand . 13
1.3.4 PreparedJS . 14

1.4 Server-driven policy enforcement 14
1.4.1 Selection of the policy enforcement implementation . . 14
1.4.2 Server-drive enforcement architecture 15
1.4.3 Server-driven enforcement with JSand 16

1.5 Overview of this deliverable 16

2 You Are What You Include: Large-scale Evaluation of Re-
mote JavaScript Inclusions 20
2.1 Introduction . 20
2.2 Data Collection . 22

2.2.1 Discovering remote JavaScript inclusions 22
2.2.2 Crawling Results . 23

2.3 Characterization of JavaScript Providers and Includers 25
2.3.1 Evolution of remote JavaScript Inclusions 26
2.3.2 Quality of Maintenance Metric 28
2.3.3 Risk of Including Third-Party Providers 32

2.4 Attacks . 33
2.4.1 Cross-user and Cross-network Scripting 34
2.4.2 Stale Domain-name-based Inclusions 35
2.4.3 Stale IP-address-based Inclusions 36
2.4.4 Typosquatting Cross-site Scripting (TXSS) 37

2.5 Countermeasures . 38
2.5.1 Sandboxing remote scripts 38
2.5.2 Using local copies . 41

2.6 Related Work . 42
2.7 Conclusion . 44

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 6/158

3 A Two-Tier Sandbox Architecture for Untrusted JavaScript 49
3.1 Introduction . 49
3.2 Problem statement . 51
3.3 Two-tier sandbox architecture 53
3.4 Prototype implementation . 55

3.4.1 The Secure ECMAScript 5 sandbox library (SES) . . . 55
3.4.2 The two-tier sandbox architecture prototype 56
3.4.3 Tamper-proofing Arguments 57

3.5 Fine-grained Policy Definition and Enforcement 58
3.5.1 Policy Definition . 59
3.5.2 Enforcement Method 61

3.6 Validation . 64
3.7 Related work . 66
3.8 Discussion and future work . 69

4 JSand: Complete Client-Side Sandboxing of Third-Party Java-
Script without Browser Modifications 73
4.1 Introduction . 73
4.2 Problem statement . 75

4.2.1 Integrating third-party JavaScript 75
4.2.2 Malicious script inclusion 76
4.2.3 Requirements . 76

4.3 JSand security architecture . 77
4.3.1 Architectural overview 77
4.3.2 Under the hood . 78

4.4 Prototype implementation . 79
4.4.1 Object-capability system 79
4.4.2 Policy-enforcing membranes 80
4.4.3 Security policies . 82
4.4.4 Wrapping the DOM 84
4.4.5 Dynamic script loading support 85
4.4.6 Support for legacy scripts 86

4.5 Evaluation . 86
4.5.1 Complete mediation 86
4.5.2 Backwards compatibility 87
4.5.3 Performance benchmarks 91

4.6 Related work . 93
4.7 Conclusion . 95

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 7/158

5 PreparedJS: Secure Script-Templates for JavaScript 99
5.1 Introduction . 99

5.1.1 Motivation . 99
5.2 Technical background . 100

5.2.1 Cross-site Scripting (XSS) 100
5.2.2 Content Security Policies (CSP) 100

5.3 CSP’s remaining weaknesses 102
5.3.1 Weakness 1: Insecure server-side assembly of Java-

Script code . 102
5.3.2 Weakness 2: Full control over external, whitelisted scripts103
5.3.3 Weakness 3: Injection of further script-tags 104
5.3.4 CSP 1.1’s script-nonce directive 104
5.3.5 Analysis . 106

5.4 Goal: Stable Cryptographic Checksums for Scripts 106
5.5 PreparedJS . 107

5.5.1 JavaScript templates for static server-side scripts . . . 108
5.5.2 Code legitimacy checking via script checksums 109
5.5.3 Extended CSP Syntax 110
5.5.4 PreparedJS-aware script tags 110
5.5.5 Summary: The three stages of PreparedJS 111

5.6 Implementation and enforcement 112
5.6.1 Native, browser-based implementation 112
5.6.2 Transparently providing legacy support 115

5.7 Discussion . 116
5.7.1 Security evaluation . 116
5.7.2 Cost of adoption . 117

5.8 Related work . 118
5.9 Conclusion . 119

6 Cookieless Monster: Exploring the Ecosystem of Web-based
Device Fingerprinting 123
6.1 Introduction . 123

6.1.1 Commercial Fingerprinting 125
6.1.2 Fingerprinting through popular plugins 127
6.1.3 Vendor-specific fingerprinting 128
6.1.4 Detection of fonts . 128
6.1.5 Detection of HTTP Proxies 131
6.1.6 System-fingerprinting plugins 132
6.1.7 Fingerprint Delivery Mechanism 133
6.1.8 Analysis Limitations 134

6.2 Adoption of fingerprinting . 134

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 8/158

6.2.1 Adoption on the popular web 134
6.2.2 Adoption by other sites 135

6.3 Fingerprinting the behavior of special objects 137
6.3.1 Experimental Fingerprinting Setup 137
6.3.2 Results . 139
6.3.3 Summary . 145

6.4 Analysis of User-Agent-Spoofing Extensions 145
6.5 Discussion . 149

6.5.1 Reducing the fingerprintable surface 149
6.5.2 Alternative uses of fingerprinting 150

6.6 Related Work . 151
6.7 Conclusion . 152

7 Conclusion 157

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 9/158

1 Introduction
Modern web applications intensively use JavaScript to create highly respon-
sive user interfaces, and to enrich the website with additional functionality
(ranging from integration with social media sites, to context-sensitive ad-
vertisements and tools for website analytics). To do so, a web developer
can integrate in-house developed JavaScript libraries, or can simply rely on
relevant third-party JavaScript libraries.

In this deliverable, we will explore the risks involved in integrating third-
party JavaScript, and discuss the server-driven enforcement mechanisms de-
veloped in work package 4 of the WebSand project to securely integrate
untrusted third-party JavaScript code as part of your website. This section
provides the overview of the research conducted in work package 4, whereas
Sections 2 to 6 provide more detailed descriptions in the form of published
research papers.

In Subsection 1.1, the web security model is briefly discussed, as well as
the impact of this security model on integrating third-party JavaScript in a
website. In addition, an assessment of script inclusions on the top 10,000
most popular websites underpins the widespreadness of this type of code
assembly on the web, and the urge to securely compose JavaScript coming
from potentially untrusted third-party providers.

Subsection 1.2 briefly summarizes the set of security-sensitive operations,
as they are available in the JavaScript context. Next, the security-sensitive
operations are bundled in logical categories, in order to enable the specifi-
cation of least-privilege secure composition policies. Finally, this deliverable
also investigates how the richness of JavaScript APIs not only affects the
security but also the privacy of end-users in web fingerprinting frameworks.

In Subsection 1.3, a variety of enforcement techniques is proposed and
discussed, as they have been developed within WebSand. These enforcement
techniques range from a security-enhanced browser to a JavaScript security
architecture that runs on top of mainstream browsers.

Finally, Subsection 1.4 discusses how the server-driven enforcement of
least-privilege composition is achieved within WebSand.

1.1 Web security model
The security model in which third-party JavaScript code executes is based
on the de facto security policy of the Web: the Same Origin Policy (SOP).
The SOP states that scripts from one origin should not be able to access
content from other origins. This prevents scripts from stealing data, cookies
or login credentials from other sites.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 10/158

1.1.1 Integration of scripts

The two most-widespread techniques to integrate third party JavaScript into
a web application are through script inclusion or via iframe integration.
Loading components from different origins in iframes causes them to be sep-
arated by the SOP. Using script inclusion causes the script to be loaded in
the protection domain of the including page, which is a straightforward way
to achieve interaction between components. Communication with the origin
of the page containing the script can be achieved using the XMLHttpRequest
functionality of the DOM.

Script inclusion HTML script tags are used to execute JavaScript while
a webpage is loading. This JavaScript code can be located on a different
server than the webpage it is executing in. When executing, the browser will
treat the code as if it originated from the same origin as the webpage itself,
without any restrictions of the Same-Origin Policy.

The included code executes in the same JavaScript context, has access
to the code of the integrating webpage and all of its data structures. All
sensitive JavaScript operations available to the integrating webpage are also
available to the integrated code.

Iframe integration HTML iframe tags allow a web developer to include
one document inside another. The integrated document is loaded in its own
environment almost as if it were loaded in a separate browser window. The
advantage of using an iframe in a web application is that the integrated
component (coming from another origin) is isolated from the integrating
webpage via the Same-Origin Policy. However, the code running inside of
the iframe still has access to all of the same sensitive JavaScript operations
as the integrating webpage, albeit limited to its own execution context (i.e.
origin). For instance, a third-party component can use local storage APIs,
but only has access to the local storage of its own origin.

1.1.2 JavaScript inclusions: assessing the state of practice

The majority of third-party JavaScript APIs are integrated via script inclu-
sion, giving the external script provider full control over the client-side part
of their website. This can be the case if the script provider has malicious
intentions, but can as well happen if the script provider gets compromised
over time.

To better understand this relationship between script provider and web-
site owner, we have examined if and how the 10,000 most important sites

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 11/158

integrate third-party JavaScript code, as reported in more detail in Section 2.
We examined 3,300,000 pages of the top 10,000 websites (according to

Alexa), and extracted 8,439,799 remote script inclusions. 88.45% of the
10,000 web sites included at least one remote JavaScript library, and there
are even sites in the top Alexa list that trust up to 295 remote hosts.

To assess the quality/security of web sites as well as script providers, we
defined the Quality of Maintenance (QoM) metric and performed an em-
pirical evaluation of various domains. As expected, we discovered that low-
maintenance domains often include JavaScript libraries from low-maintenance
providers and high-maintenance domains, instead, tend to prefer high-maintenance
providers, showing that they are indeed concerned about the providers they
include.

However, we also found that, for sites with high-maintenance scores, one
out of four of their inclusions comes from providers with a low maintenance
score, which are potential “weak spots” in their security perimeter.

1.2 Secure composition policies
As a first step to better understand the impact of running arbitrary Java-
Script code, the upcoming HTML5 specification and accompanying APIs
have been studied, and a list of 86 security-sensitive operations available in
the JavaScript execution context has been enumerated. This includes, among
others, access to sensitive information in the DOM, the history and cookies,
sensitive device information, inter-frame communication, cross-domain com-
munication, and various features in media, UI, and rendering. This list of
security-sensitive operations is a key ingredient in defining privileges granted
to third-party JavaScript code as part of the secure composition policies.

As reported in deliverable D4.1, these security-sensitive operations have
been bundled into nine disjoint categories, based on their functionality (as
illustrated in Table 1). The least-privilege composition policy for a third-
party script expresses for each of the categories whether or not the specific
privilege is allowed or not, and if allowed, the composition policy can further
restrain by specifying a whitelist. For instance, for external communication,
the policy can allow remote communication such as XHR, but restrict it to
a set of trusted domains specified in the DestinationDomainSet.

Note that with the advent of HTML5, a whole range of new JavaScript
APIs has been defined, drastically increasing the functionality that can be
accessed by JavaScript code. As a consequence, if an attacker can get a
handle on JavaScript code included in your website, the attacker is able to
control all this functionality.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 12/158

Categories and APIs (# op.) Whitelist
DOM Access ElemReadSet, ElemWriteSet

DOM Core (17)
Cookies KeyReadSet, KeyWriteSet

cookies (2)
External Communication DestinationDomainSet

XHR, CORS, UMP (4)
WebSockets (5)
Server-sent events (2)

Inter-frame Communication DestinationDomainSet
Web Messaging (3)

Client-side Storage KeyReadSet, KeyWriteSet
Web Storage (5)
IndexedDB (16)
File API (4)
File API: Dir. and Syst. (11)
File API: Writer (3)

UI and Rendering
History API (4)
Drag/Drop events (3)

Media
Media Capture API (3)

Geolocation
Geolocation API (2)

Device Access SensorReadSet
System Information API (2)

Total number of security-sensitive operations: 86

Table 1: Overview of the sensitive JavaScript operations from the HTML 5
APIs, divided in categories.

In our least-privilege composition policy, we mainly focused on the secu-
rity of the web application. In addition, we have also investigated what the
risks are with respect to the privacy of the end user (Section 6).

In particular, we have studied the problem of web-based fingerprinting to
get a good understanding of how real-life web fingerprinting providers work,
and to assess to what extent this can be controlled or limited by enforcing
composition policies on third-party code. As part of this ongoing research,
we can already conclude that although we might be able to block some of
the functionality used by web fingerprinting libraries, we will probably never
be able to hide all the complexity and sophistication browsers possess (and
what typically is abused by web fingerprinting libraries) with a server-driven
solution.

1.3 Enforcing secure composition policies
Our implementation strategy has been to pursue multiple tracks to enforce
least-privilege integration of JavaScript code (as proposed in Deliverable 4.1),
ranging from an enhanced browser environment to a JavaScript security ar-
chitecture deployed in legacy browsers. In this subsection, we report on the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 13/158

various implementations for secure composition of 3rd party JavaScript com-
ponents. They mainly vary in their mode of deployment, but also make
different trade-offs in terms of legacy support, precision, efficiency and main-
tainability.

1.3.1 WebJail

The first prototype, WebJail, is a client-side security architecture that en-
forces the least-privilege composition policy on iframe integrated code via a
modified browser. In this prototype, the secure composition policy is pro-
vided by the server-side, but the full enforcement is realized in an enhanced
client-side environment.

Via deep aspect technology in the browser (as proposed by the authors
of ConScript), every access to security-sensitive operations is mediated in
the browser core, and can be configured via policy-driven advices. The com-
position policy is specified by the integrator and pushed as an attribute of
the iframe tag to the client. On receipt of the composition policy, the en-
hanced browser triggers the loading of the security architecture and enforces
the provided composition policy.

More details on WebJail can be found in Deliverable 4.1 and Deliverable
4.2.

1.3.2 Two-tier sandbox

The second prototype is a client-side security architecture, developed in Java-
Script, that enforces modular and fine-grained security policies for untrusted
JavaScript code. The two-tier sandbox architecture builds on top of the
Secure ECMAScript (SES) library.

The two-tier sandbox architecture combines a coarse-grained outer sand-
box with a fine-grained inner sandbox. The architecture allows to enforce
application-specific and stateful fine-grained policies without browser mod-
ification or pre-processing of the code (e.g. in line with the Self-Protecting
JavaScript mechanism), while the baseline API in the outer sandbox ensures
a failsafe fallback in case of badly written policies.

More details on the two-tier sandbox architecture can be found in Sec-
tion 3.

1.3.3 JSand

The third prototype is a client-side security architecture, developed in Java-
Script, that enforces the least-privilege composition policy without (major)
browser modifications. This implementation strategy is inspired by earlier

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 14/158

results on the two-tier sandbox architecture, but matures the sandboxing
technology as well as enables the enforcement of the least-privilege composi-
tion policy.

The JavaScript security architecture builds on top of the Secure ECMA-
Script (SES) library, and provides a sandbox environment for third party
scripts. The SES sandbox isolates the JavaScript execution, and limits its
capabilities according to the object-capability model. To enforce the secure
composition policies, a baseline API has been developed to provide the nec-
essary capabilities towards the sandboxed script, while mediating access to
security-sensitive APIs via wrappers and the Proxy API. In this prototype,
both the secure composition policy as well as the security architecture are
provided by the server-side, and execute in legacy browser environments.

More details on JSand can be found in Section 4.

1.3.4 PreparedJS

The fourth prototype, PreparedJS, builds upon the Content Security Policy
(CSP) to securely compose third-party scripts. PreparedJS facilitates the use
of CSP in web applications by offering a templating format for JavaScript
(in line with SQL’s prepared statement model), and strongly binds scripts
and policies by applying a light-weight script checksumming scheme.

In combination with the base-line protection provided by CSP, PreparedJS
is able to prevent the full spectrum of potential XSS attacks. PreparedJS
can be realized as a native browser component while providing backwards
compatibility with legacy browsers that cannot handle PreparedJS’s script
format.

More details on PreparedJS can be found in Section 5.

1.4 Server-driven policy enforcement

In this subsection, we briefly discuss the selection of the WebSand WP4
policy enforcement implementation, describe the server-driven enforcement
architecture and illustrate in more detail how this is realized with JSand.

1.4.1 Selection of the policy enforcement implementation

The four secure composition prototypes explore different implementation
strategies to enforce the secure composition of third-party code. All imple-
mentation strategies have reported successful isolation of third-party Java-
Script. They mainly vary in their mode of deployment, but also make differ-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 15/158

ent trade-offs in terms of legacy support, precision, efficiency and maintain-
ability.

WebJail focuses on the secure integration of third-party iframes and re-
alizes this enforcement by mediating access to security-sensitive operations
in the browser core. The other three prototypes focus on the secure integra-
tion of scripts, and test the feasibility of realizing this enforcement without
(major) client-side modifications.

The two-tier sandbox architecture allows to apply application-specific,
stateful fine-grained policies. By combining the fine-grained enforcement
mechanism with a more coarse-grained outer sandbox, the technique ensure
a baseline protection in case the policy writer mistakenly introduces vulner-
abilities while expressing the fine-grained policies.

The JSand approach is more focused towards the enforcement of the least-
privilege composition policy, which tends to be a good balance between the
fine-grained policies of the two-tier sandbox approach and the very coarse-
grained policies of the Same Origin Policy and the Content Security Policy.

PreparedJS enriches the Content Security Policy model, both in terms
of usability for the web developer, and security towards white-listing the
intended third-party scripts. This latter technique provides an additional
layer of protection on top of the mechanisms specified above, to protect
websites against trusted scripts and script providers that get compromised
over time.

Based on the intermediate results of the various prototypes, we have se-
lected the JSand prototype as basis in work package 4 for the server-driven
enforcement of secure composition policies. We have further matured the
prototype implementation to support a representative selection of DOM op-
erations, and applied it to the most frequently used third-party scripts.

1.4.2 Server-drive enforcement architecture

The server-driven enforcement works as follows. First a set of secure com-
position policies is expressed by the website owner or the security officer in
charge. The least-privilege composition policy, as discussed in Deliverable
D4.1, expresses for each of the nine categories whether or not scripts should
have access to these security-relevant operations. Next, a sandbox environ-
ment is configured as part of the web application, by selecting the appropriate
secure composition policy and the code that needs to be executed as part of
the sandbox. Both of these steps are part of the development or deployment
of the web application.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 16/158

During execution, the client-side code to set up the security architecture
and the secure composition policy are pushed towards the browser as part of
the web page. Before loading the third-party JavaScript code, the JavaScript
security architecture is set up, and a script-specific sandbox environment is
created based on the provided secure composition policy. Once fully config-
ured, the third-party JavaScript code is loaded in the sandbox environment
and executed.

1.4.3 Server-driven enforcement with JSand

Listing 1 illustrates how Google Maps can be integrated into a webpage with
JSand. In line 4, the JSand framework gets initialized on the webpage with
the JSP tag jsand:initialize, and a new sandbox environment is loaded
by means of the jsand:sandbox tag.

The value of the policy attribute of the latter one (ie. googlemapsNoGeolo-
cation) refers to one of the secure composition policies that have been made
preconfigured for this application context by the security officer (expressed
in listing 2). Such a policy consists of the least-privilege composition policy,
and optionally one or more JavaScript APIs that are preloaded as part of the
sandbox environment. For instance, in case of the exemplary googlemapsNo-
Geolocation policy of listing 1, the Google Maps API is preloaded as part of
the sandboxed context.

In addition to preloaded APIs, the developer can add additional Java-
Script code blocks and references to JavaScript files, similar to a non-JSand
environment. In this example, a code block is added with the jsand:code tag
to set some page-specific variables (lines 6 to 10), and an external JavaScript
file is loaded on line 11 with the jsand:script tag.

The server-side implementation of JSand in JEE automatically transforms
this input to the output shown in listing 3.

The JSandLib.js JavaScript library on line 3 of listing 3 encapsulates
the core logic of JSand. This reusable library enables the creation of JSand
sandboxes: the loading of the SES environment, and the configuration of the
DOM wrappers and proxies based on the application-specific composition
policy. This functionality is applied in lines 4-26 of listing 3 by calling the
sb.Sandbox constructor.

1.5 Overview of this deliverable
In the remainder of this deliverable, the following research papers report and
discuss in more detail the WebSand results achieved in this work package:

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 17/158

1 <%@tagl ib u r i ="/WEB−INF/ t l d s / jsand " p r e f i x=" jsand"%>
2 <html>
3 <head>
4 <jsand : i n i t i a l i z e />
5 <jsand : sandbox po l i c y="googlemapsNoGeolocation">
6 <jsand : code>
7 canvasID = "map_canvas " ;
8 f a i l c i t y = "New York " ;
9 f a i l p o s = new goog le . maps . LatLng (40 . 69 , −73.95) ;
10 </jsand : code>
11 <jsand : s c r i p t s r c="googlemaps−g eo l o c a t i on . j s "/>
12 </jsand : sandbox>
13 </head>
14 <body>
15 <div s t y l e="width : 300px ; he ight : 300px ; "

id="map_canvas"></div>
16 </body>
17 </html>

Listing 1: Integrating GoogleMaps with JSand

1 { " domaccess−read " : " yes " ,
2 " domaccess−wr i t e " : " yes " ,
3 " cook ie s−read " : " yes " ,
4 " cook ie s−wr i t e " : " yes " ,
5 " extcomm " : " yes " ,
6 " framecomm " : " yes " ,
7 " s torage−read " : " yes " ,
8 " s torage−wr i t e " : " yes " ,
9 " u i " : " yes " ,
10 "media " : " yes " ,
11 " dev i ce " : " yes " }

Listing 2: The exemplary googlemapsNoGeolocation secure composition
policy

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 18/158

1 <html>
2 <head>
3 <s c r i p t s r c="/JSand−JEE/JSandLib . j s "></s c r i p t >
4 <sc r i p t >
5 window . addEventListener (" load " , f unc t i on () {
6 var sandbox = new sb . Sandbox (
7 { " domaccess−read " : " yes " ,
8 " domaccess−wr i t e " : " yes " ,
9 " cook ie s−read " : " yes " ,
10 " cook ie s−wr i t e " : " yes " ,
11 " extcomm " : " yes " ,
12 " framecomm " : " yes " ,
13 " s torage−read " : " yes " ,
14 " s torage−wr i t e " : " yes " ,
15 " u i " : " yes " ,
16 "media " : " yes " ,
17 " dev i ce " : " yes "}) ;
18 sandbox . load ("maps3−12−10− f i x e d . j s " , f a l s e ,
19 func t i on () {
20 sandbox . eva l (" canvasID = \"map_canvas \ " ; f a i l c i t y =

\"New York \ " ; f a i l p o s = new
goog le . maps . LatLng (40 . 69 , −73.95) ; " ,

21 func t i on () {
22 sandbox . load (" googlemaps−g eo l o c a t i on . j s " , f a l s e ,

f unc t i on () {}) ;
23 }) ;
24 }) ;
25 }) ;
26 </s c r i p t >
27 </head>
28 <body>
29 <div s t y l e="width : 300px ; he ight : 300px ; "

id="map_canvas"></div>
30 </body>
31 </html>

Listing 3: Server output of integrating GoogleMaps with JSand

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 19/158

• Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van
Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni
Vigna, You are what you include: Large-scale evaluation of
remote JavaScript inclusions, Proceedings of the 19th ACM con-
ference on Computer and Communications Security (CCS 2012), pages
736-747, Raleigh, NC, USA, 16-18 October 2012 (Section 2)

• Phu H. Phung, Lieven Desmet, A two-tier sandbox architecture
for untrusted JavaScript, Proceedings of the Workshop on Java-
Script Tools (JSTools ’12), pages 1-10, Beijing, China, 13 June 2012
(Section 3)

• Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung,
Lieven Desmet, Frank Piessens, JSand: Complete client-side sand-
boxing of third-party JavaScript without browser modifica-
tions, Proceedings of the 28th Annual Computer Security Applica-
tions Conference (ACSAC 2012), pages 1-10, Orlando, Florida, USA,
3-7 December 2012 (Section 4)

• Martin Johns, PreparedJS: Secure Script-Templates for Java-
Script, in 10th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA ’13), July 2013 (Section 5)

• Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, Giovanni Vigna, Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprinting, IEEE
Security and Privacy, San Francisco, 19-22 May 2013 (Section 6)

Section 7 summarizes the contributions of this deliverable.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 20/158

2 You Are What You Include: Large-scale
Evaluation of Remote JavaScript Inclusions12

2.1 Introduction
The web has evolved from static web pages to web applications that dynam-
ically render interactive content tailored to their users. The vast majority of
these web applications, such as Facebook and Reddit, also rely on client-side
languages to deliver this interactivity. JavaScript has emerged as the de facto
standard client-side language, and it is supported by every modern browser.

Modern web applications use JavaScript to extend functionality and en-
rich user experience. These improvements include tracking statistics (e.g.,
Google Analytics), interface enhancements (e.g., jQuery), and social inte-
gration (e.g., Facebook Connect). Developers can include these external
libraries in their web applications in two ways: either (1) by downloading
a copy of the library from a third-party vendor and uploading it to their
own web server, or (2) by instructing the users’ browsers to fetch the code
directly from a server operated by a third party (usually the vendor). The
safest choice is the former, because the developer has complete control over
the code that is served to the users’ browsers and can inspect it to verify its
proper functionality. However, this choice comes with a higher maintenance
cost, as the library must be updated manually. Another downside is that
by not including remote code from popular Content Distribution Networks,
the developer forces the users’ browsers to download scripts from his own
servers even if they are identical with scripts that are already available in
the browsers’ cache. Moreover, this method is ineffective when the library
loads additional, remotely-hosted, code at run time (e.g., like Google Analyt-
ics does). A developer might avoid these drawbacks by choosing the second
option, but this comes at the cost of trusting the provider of the code. In
particular, the provider has complete control over the content that is served
to the user of the web application. For example, a malicious or compro-
mised provider might deface the site or steal the user’s credentials through

1This paper has been published as [18]: Nick Nikiforakis, Luca Invernizzi, Alexan-
dros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens,
Giovanni Vigna, You are what you include: Large-scale evaluation of remote JavaScript
inclusions, Proceedings of the 19th ACM conference on Computer and Communications
Security (CCS 2012), pages 736-747, Raleigh, NC, USA, 16-18 October 2012

2For KU Leuven, this research was done with the financial support from the Prevention
against Crime Programme of the European Union, the IBBT, the Research Fund KU
Leuven, and the EU-funded FP7 projects NESSoS and WebSand. For UCSB, this work
was supported by the Office of Naval Research (ONR) under Grant N000140911042, the
National Science Foundation (NSF) under grants CNS-0845559 and CNS-0905537.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 21/158

DOM manipulation or by accessing the application’s cookies. This makes
the provider of the library an interesting target for cyber-criminals: after
compromising the provider, attackers can exploit the trust that the web ap-
plication is granting to the provider’s code to obtain some control over the
web application, which might be harder to attack directly. For example, on
the 8th of December 2011 the domain distributing qTip2, a popular jQuery
plugin, was compromised [2] through a WordPress vulnerability. The qTip2
library was modified, and the malicious version was distributed for 33 days.

It is generally known that developers should include JavaScript only from
trustworthy vendors, though it is frightening to imagine the damage attackers
could do when compromising a JavaScript vendor such as Google or Face-
book. However, there has been no large-scale, in-depth study of how well the
most popular web applications implement this policy. In this paper, we study
this problem for the 10,000 most popular web sites and web applications (ac-
cording to Alexa), outlining the trust relationships between these domains
and their JavaScript code providers. We assess the maintenance-quality of
each provider, i.e., how easy it would be for a determined attacker to compro-
mise the trusted remote host due to its poor security-related maintenance,
and we identify weak links that might be targeted to compromise these top
domains. We also identify new types of vulnerabilities. The most notable
is called “Typosquatting Cross-site Scripting” (TXSS), which occurs when a
developer mistypes the address of a library inclusion, allowing an attacker
to register the mistyped domain and easily compromise the script-including
site. We found several popular domains that are vulnerable to this attack.
To demonstrate the impact of this attack, we registered some domain names
on which popular sites incorrectly bestowed trust, and recorded the number
of users that were exposed to this attack.
The main contributions of this paper are the following:

• We present a detailed analysis of the trust relationships of the top
10,000 Internet domains and their remote JavaScript code providers

• We evaluate the security perimeter of top Internet domains that include
code from third-party providers.

• We identify four new attack vectors to which several high traffic web
sites are currently vulnerable.

• We study how the top domains have changed their inclusions over the
last decade.

The rest of this paper is structured as follows. Section 2.2 presents the
setup and results of our large-scale crawling experiment for the discovery

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 22/158

of remote JavaScript inclusions. Section 2.3 presents the evolution of Java-
Script inclusions of popular web sites and our metric for assessing the quality
of maintenance of a given JavaScript provider. In Section 2.4 we introduce
four new types of vulnerabilities discovered during our crawl. Section 2.5
reviews some techniques that web applications can utilize to protect them-
selves against malicious third-party JavaScript libraries. Section 2.6 explores
the related work and Section 2.7 concludes.

2.2 Data Collection
In this section, we describe the setup and results of our large-scale crawling
experiment of the Alexa top 10,000 web sites.

2.2.1 Discovering remote JavaScript inclusions

We performed a large web crawl in order to gather a large data set of web
sites and the remote scripts that they include. Starting with Alexa’s list of
the top 10,000 Internet web sites [5], we requested and analyzed up to 500
pages from each site. Each set of pages was obtained by querying the Bing
search engine for popular pages within each domain. For instance, the search
for “site:google.com” will return pages hosted on Google’s main domain as
well as subdomains. In total, our crawler visited over 3,300,000 pages of
top web sites in search for remote JavaScript inclusions. The set of visited
pages was smaller than five million since a portion of sites had less than 500
different crawlable pages.

From our preliminary experiments, we realized that simply requesting
each page with a simple command-line tool that performs an HTTP request
was not sufficient, since in-line JavaScript code can be used to create new,
possibly remote, script inclusions. For example, in the following piece of
code, the inline JavaScript will create, upon execution, a new remote script
inclusion for the popular Google-Analytics JavaScript file:� �

1 var ishttps = "https :" == document . location . protocol ;
2 var gaJsHost = (ishttps)?
3 "https :// ssl ." : "http :// www .");
4 var rscript = "";
5 rscript += "\%3 Cscript src =’" + gaJsHost ;
6 rscript += "google - analytics .com/ga.js ’ type =";
7 rscript += "’text/javascript ’\%3E\%3C/ script \%3E";
8
9 document .write(unescape (rscript));� �

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 23/158

5
15

25
35

45
55

65
75

85
95

105
115

125
135

145
155

170
180

215
225

255
265

275
285

295

0

5

10

15

20

25

30

35

#Remote hosts providing JS files

%
 o

f A
le

xa
 s

ite
s

Figure 1: Relative frequency distribution of the percentage of top Alexa sites
and the number of unique remote hosts from which they request JavaScript
code

To account for dynamically generated scripts, we crawled each page uti-
lizing HtmlUnit, a headless browser 3, which in our experiments pretended to
be Mozilla Firefox 3.6. This approach allowed us to fully execute the inline
JavaScript code of each page, and thus accurately process all remote script
inclusion requests, exactly as they would be processed by a normal Web
browser. At the same time, if any of the visited pages, included more remote
scripts based on specific non-Firefox user-agents, these inclusions would be
missed by our crawler. While in our experiments we did not account for
such behaviour, such a crawler could be implemented either by fetching and
executing each page with multiple user-agents and JavaScript environments,
or using a system like Rozzle [14] which explores multiple execution paths
within a single execution in order to uncover environment-specific malware.

2.2.2 Crawling Results

Number of remote inclusions The results of our large-scale crawling of
the top 10,000 Internet web sites are the following: From 3,300,000 pages,
we extracted 8,439,799 inclusions. These inclusions map to 301,968 unique

3HtmlUnit-http://htmlunit.sourceforge.net

FP7-ICT-2009-5
Project No. 256964

http://htmlunit.sourceforge.net

D4.3: Secure Composition Policies and Server-driven Enforcement 24/158

Offered service JavaScript file % Top
Alexa

Web analytics www.google-analytics.com/ga.js 68.37%
Dynamic Ads pagead2.googlesyndication.com/

pagead/show_ads.js
23.87%

Web analytics www.google-analytics.com/urchin.js 17.32%
Social Networking connect.facebook.net/en_us/all.js 16.82%
Social Networking platform.twitter.com/widgets.js 13.87%
Social Networking & Web
analytics

s7.addthis.com/js/250/addthis_
widget.js

12.68%

Web analytics & Tracking edge.quantserve.com/quant.js 11.98%
Market Research b.scorecardresearch.com/beacon.js 10.45%
Google Helper Functions www.google.com/jsapi 10.14%
Web analytics ssl.google-analytics.com/ga.js 10.12%

Table 2: The ten most popular remotely-included files by the Alexa top
10,000 Internet web-sites

URLs of remote JavaScript files. This number does not include requests for
external JavaScript files located on the same domain as the page requesting
them. 88.45% of the Alexa top 10,000 web sites included at least one remote
JavaScript library. The inclusions were requesting JavaScript from a total of
20,225 uniquely-addressed remote hosts (fully qualified domain names and
IP addresses), with an average of 417 inclusions per remote host. Figure 1
shows the number of unique remote hosts that the top Internet sites trust
for remote script inclusions. While the majority of sites trusts only a small
number of remote hosts, the long-tailed graph shows that there are sites in the
top Alexa list that trust up to 295 remote hosts. Since a single compromised
remote host is sufficient for the injection of malicious JavaScript code, the
fact that some popular sites trust hundreds of different remote servers for
JavaScript is worrisome.

Remote IP address Inclusions From the total of 8,439,799 inclusions,
we discovered that 23,063 (0.27%) were requests for a JavaScript script, where
the URL did not contain a domain name but directly a remote IP address.
These requests were addressing a total of 324 unique IP addresses. The num-
ber of requesting domains was 299 (2.99% percent of the Alexa top 10,000)
revealing that the practice of addressing a remote host by its IP address is
not widespread among popular Internet sites.

By geolocating the set of unique IP addresses, we discovered that they

FP7-ICT-2009-5
Project No. 256964

www.google-analytics.com/ga.js
pagead2.googlesyndication.com/pagead/show_ads.js
pagead2.googlesyndication.com/pagead/show_ads.js
www.google-analytics.com/urchin.js
connect.facebook.net/en_us/all.js
platform.twitter.com/widgets.js
s7.addthis.com/js/250/addthis_widget.js
s7.addthis.com/js/250/addthis_widget.js
edge.quantserve.com/quant.js
b.scorecardresearch.com/beacon.js
www.google.com/jsapi
ssl.google-analytics.com/ga.js

D4.3: Secure Composition Policies and Server-driven Enforcement 25/158

were located in 35 different countries. The country with most of these IP
addresses is China (35.18%). In addition, by geolocating each domain that
included JavaScript from a remote IP address, we recorded only 65 unique
cases of cross-country inclusions, where the JavaScript provider and the web
application were situated on different countries. This shows that if a web ap-
plication requests a script directly from a remote host through its IP address,
the remote host will most likely be in the same country as itself.

In general, IP-address-based script inclusion can be problematic if the IP
addresses of the remote hosts are not statically allocated, forcing the script-
including pages to keep track of the remote servers and constantly update
their links instead of relying on the DNS protocol.

Popular JavaScript libraries Table 2 presents the ten most included
remote JavaScript files along with the services offered by each script and
the percentage of the top 10,000 Alexa sites that utilize them. There are
several observations that can be made based on this data. First, by grouping
JavaScript inclusions by the party that benefits from them, one can observe
that 60% of the top JavaScript inclusions do not directly benefit the user.
These are JavaScript libraries that offer Web analytics, Market Research,
User tracking and Dynamic Ads, none of which has any observable effect in a
page’s useful content. Inclusions that obviously benefit the user are the ones
incorporating social-networking functionality.

At the same time, it is evident that a single company, Google, is respon-
sible for half of the top remotely-included JavaScript files of the Internet.
While a complete compromise of this company is improbable, history has
shown that it is not impossible [32].

2.3 Characterization of JavaScript Providers and In-
cluders

In this section, we show how the problem of remote JavaScript library in-
clusion is widespread and underplayed, even by the most popular web ap-
plications. First, we observe how the remote inclusions of top Internet sites
change over time, seeking to understand whether these sites become more
or less exposed to a potential attack that leverages this problem. Then,
we study how well library providers are maintaining their hosts, inquiring
whether the developers of popular web applications prefer to include Java-
Script libraries from well-maintained providers, which should have a lower
chance of being compromised, or whether they are not concerned about this
issue.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 26/158

Figure 2: Evolution of remote JavaScript inclusions for domains ranked in
the top 10,000 from Alexa.

2.3.1 Evolution of remote JavaScript Inclusions

In the previous section, we examined how popular web sites depend on re-
mote JavaScript resources to enrich their functionality. In this section, we
examine the remote JavaScript inclusions from the same web sites in another
dimension: time. We have crawled archive.org [4] to study how JavaScript
inclusions have evolved through time in terms of new remote dependencies
and if these increase or decrease over time.

To better understand how JavaScript is included and how the inclusions
change over time, we examine each page from different snapshots that span
across several years. For the same pages that we crawled in Section 2.2, we
have queried archive.org to obtain their versions for past years (if available).
For each domain, we choose one representative page that has the most remote
inclusions and the highest availability since 2000. For every chosen page we
downloaded one snapshot per year from 2000 to 2010. Every snapshot was
compared with the previous one in order to compute the inclusion changes.

In Figure 2, one can see the evolution of remote JavaScript inclusions for
domains ranked in the top 10,000 from Alexa. For every year, we show how
the inclusions from the previous available snapshot changed with the addition
of new inclusions or if they remained the same. A new inclusion means that
the examined domain introduced at least one new remote script inclusion
since the last year. If the page’s inclusions were the same as the previous

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 27/158

Year
No
data

Same
inclusions

New
inclusions

% New
inclusions

2001 8,256 1,317 427 24.48%
2002 7,952 1,397 651 31.79%
2003 7,576 1,687 737 30.40%
2004 7,100 2,037 863 29.76%
2005 6,672 2,367 961 28.88%
2006 6,073 2,679 1,248 31.78%
2007 5,074 3,136 1,790 36.34%
2008 3,977 3,491 2,532 42.04%
2009 3,111 3,855 3,034 44.04%
2010 1,920 4,407 3,673 45.46%

Table 3: Evolution of the number of domains with same and new remote
JavaScript inclusions for the Alexa top 10,000

year, we consider those as same inclusion. Unfortunately, archive.org does
not cover all the pages we examined completely, and thus we have cases where
no data could be retrieved for a specific domain for all of the requested years.
Also, many popular web sites did not exist 10 years ago. There were 892
domains for which we did not find a single URL that we previously crawled
in archive.org. A domain might not be found on archive.org because of one
of the following reasons: the website restricts crawling from its robots.txt file
(182 domains), the domain was never chosen to be crawled (320 domains)
or the domain was crawled, but not the specific pages that we chose during
our first crawl (390 domains). In Table 3, we show how many domains
introduced new inclusions in absolute numbers. In our experiment, we find
(not surprisingly) that as we get closer in time to the present, archive.org
has available versions for more of the URLs that we query for and thus we
can examine more inclusions. We discovered that every year, a significant
amount of inclusions change. Every year there are additional URLs involved
in the inclusions of a website compared to the previous years and there is
a clear trend of including even more. Back in 2001, 24.48% of the studied
domains had at least one new remote inclusion. But as the web evolves
and becomes more dynamic, more web sites extend their functionality by
including more JavaScript code. In 2010, 45.46% of the examined web sites
introduced a new JavaScript inclusion since the last year. This means that
almost half of the top 10,000 Alexa domains had at least one new remote
JavaScript inclusion in 2010, when compared to 2009.

But introducing a new JavaScript inclusion does not automatically trans-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 28/158

Year
Unique
domains

Total remote
inclusions

Average # of
new domains

2001 428 1,447 1.41
2002 680 2,392 1.57
2003 759 2,732 1.67
2004 894 3,258 1.67
2005 941 3,576 1.64
2006 974 3,943 1.61
2007 1,168 5,765 1.67
2008 1,513 8,816 1.75
2009 1,728 11,439 1.86
2010 2,249 16,901 2.10

Table 4: Number of new domains that are introduced every year in remote
inclusions.

late to a new dependency from a remote provider. In Table 4, we examine
whether more inclusions translate to more top-level remote domains. We cal-
culate the unique domains involved in the inclusions and the total number
of remote inclusions. For every page examined, we keep the unique domains
involved in its new inclusions, and we provide the average of that number
for all available pages per year. There is a clear trend in Table 4 that more
inclusions result into more external dependencies from new domains. In fact
in 2010 we observed that on average each page expanded their inclusions by
including JavaScript from 2.1 new domains on average compared to 2009.
This trend shows that the circle of trust for each page is expanding every
year and that the surface of attack against them increases.

2.3.2 Quality of Maintenance Metric

Whenever developers of a web application decide to include a library from
a third-party provider, they allow the latter to execute code with the same
level of privilege as their own code. Effectively, they are adding the third-
party host to the security perimeter of the web application, that is the set
of the hosts whose exploitation leads to controlling the code running on that
web application. Attacking the third-party, and then using that foothold
to compromise the web application, might be easier than a direct attack
of the latter. The aforementioned incident of the malicious modification of
the qTip2 plugin [2], shows that cybercriminals are aware of this and have
already used indirect exploitation to infect more hosts and hosts with more
secure perimeters.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 29/158

To better understand how many web applications are exposed to this kind
of indirect attack, we aim to identify third-party providers that could be a
weak link in the security of popular web applications. To do so, we design
a metric that evaluates how well a website is being maintained, and apply
it to the web applications running on the hosts of library providers (that
is co-located with the JavaScript library that is being remotely included).
We indicate the low-scoring as potential weak links, on the assumption that
unkempt websites seem easier targets to attackers, and therefore are attacked
more often.

Note that this metric aims at characterizing how well websites are main-
tained, and how security-conscious are their developers and administrators.
It is not meant to investigate if a URL could lead to malicious content (a la
Google Safebrowsing, for example). Also, we designed this metric to look for
the signs of low maintenance that an attacker, scouting for the weakest host
to attack, might look for. We recognize that a white-box approach, where
we have access to the host under scrutiny, would provide a much more pre-
cise metric, but this would require a level of access that attackers usually do
not have. We identified the closest prior work in establishing such a metric
in SSL Labs’s SSL/TLS survey [3] and have included their findings in our
metric.

Our Quality of Maintenance (QoM) metric is based on the following fea-
tures:

• Availability: If the host has a DNS record associated with it, we check
that its registration is not expired. Also, we resolve the host’s IP ad-
dress, and we verify that it is not in the ranges reserved for private
networks (e.g., 192.168.0.0/16). Both of these features are critical,
because an attacker could impersonate a domain by either registering
the domain name or claiming its IP address. By impersonating a do-
main, an attacker gains the trust of any web application that includes
code hosted on the domain.

• Cookies: We check the presence of at least one cookie set as HttpOnly
and, if SSL/TLS is available, at least one cookie set as Secure. Also, we
check that at least one cookie has its Path and Expiration attributes
set. All these attributes improve the privacy of session cookies, so they
are a good indication that the domain administrators are concerned
about security.

• Anti-XSS and Anti-Clickjacking protocols: We check for the
presence of the X-XSS-Protection protocol, which was introduced with

FP7-ICT-2009-5
Project No. 256964

192.168.0.0/16

D4.3: Secure Composition Policies and Server-driven Enforcement 30/158

Internet Explorer 8 [25] to prevent some categories of Cross-site Script-
ing (XSS) attacks [19]. Also, we check for the presence of Mozilla’s
Content Security Policy protocol, which prevents some XSS and Click-
jacking attacks [6] in Firefox. Finally, we check for the presence of
the X-Frame-Options protocol, which aims at preventing ClickJacking
attacks and is supported by all major browsers.

• Cache control: If SSL/TLS is present, we check if some content is
served with the headers Cache-Control: private and Pragma:no-cache.
These headers indicate that the content is sensitive and should not be
cached by the browser, so that local attacks are prevented.

• SSL/TLS implementation: For a thorough evaluation of the SS-
L/TLS implementation, we rely on the study conducted by SSL Labs
in April 2011. In particular, we check that the domain’s certificate is
valid (unrevoked, current, unexpired, and matches the domain name)
and that it is trusted by all major browsers. Also, we verify that cur-
rent protocols (e.g, TLS 1.2, SSL 3.0) are implemented, that older ones
(e.g., SSL 2.0) are not used, and if the protocols allow weak ciphers.
In addition, we check if the implementation is PCI-DSS compliant [12],
which is a security standard to which organizations that handle credit
card information must comply, and adherence to it is certified yearly by
the Payment Card Industry. Also, we check if the domain is vulnerable
to the SSL insecure-renegotiation attack. We check if the key is weak
due to a small key size, or the Debian OpenSSL flaw. Finally, we check
if the site offers Strict Transport Security, which forces a browser to
use secure connections only, like HTTPS.
SSL Labs collected the features described in the previous paragraph
nine months before we collected all the remaining features. We believe
that this is acceptable, as certificates usually have a lifespan of a few
years, and the Payment Card Industry checks PCI-DSS compliance
yearly. Also, since these features have been collected in the same period
for all the hosts, they do not give unfair advantages to some of them.

• Outdated web servers: Attackers can exploit known vulnerabilities
in web servers to execute arbitrary code or access sensitive configuration
files. For this reason, an obsolete web server is a weak link in the
security of a domain. To establish which server versions (in the HTTP
Server header) should be considered obsolete, we collected these HTTP
Server header strings during our crawl and, after clustering them, we
selected the most popular web servers and their versions. Consulting

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 31/158

Web server Up-to-date version(s)
Apache 1.3.42, 2.0.65, 2.2.22
NGINX 1.1.10, 1.0.9, 0.8.55, 0.7.69, 0.6.39, 0.5.38
IIS 7.5, 7.0
Lighttpd 1.5 , 1.4.29
Zeus 4.3
Cherokee 1.2
CWS 3.0
LiteSpeed 4.1.3
0w 0.8d

Table 5: Up-to-date versions of popular web servers, at the time of our
experiment

change-logs and CVE reports, we compiled a list of stable and up-to-
date versions, which is shown in Table 5. While it is technically possible
for a web server to report an arbitrary version number, we assume that
if the version is modified it will be modified to pretend that the web
server is more up-to-date rather than less, since the latter would attract
more attacks. This feature is not consulted in the cases where a web
server does not send a Server header or specifies it in a generic way
(e.g., “Apache”).

The next step in building our QoM metric is to weigh these features. We
cannot approach this problem from a supervised learning angle because we
have no training set: We are not aware of any study that quantifies the QoM
of domains on a large scale. Thus, while an automated approach through
supervised learning would have been more precise, we had to assign the
weights manually. Even so, we can verify that our QoM metric is realistic.
To do so, we evaluated with our metric the websites in the following four
datasets of domains in the Alexa Top 10, 000:

• XSSed domains: This dataset contains 1,702 domains that have been
exploited through cross-site scripting in the past. That is, an attacker
injected malicious JavaScript on at least one page of each domain.
Using an XSS exploit, an attacker can steal the cookies or password
as it is typed into a login form [19]. Recently, the Apache Foundation
disclosed that their servers were attacked via an XSS vulnerability, and
the attacker obtained administrative access to several servers [1]. To
build this dataset, we used XSSed [30], a publicly available database of
over 45, 000 reported XSS attacks.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 32/158

• Defaced domains: This dataset contains 888 domains that have been
defaced in the past. That is, an attacker changed the content of one
or more pages on the domain. To build this dataset, we employed the
Zone-H database [33]. This database contains more than six million
reports of defacements, however, only 888 out of the 10,000 top Alexa
domains have suffered a defacement.

• Bank domains: This dataset contains 141 domains belonging to bank-
ing institutions (online and brick and mortar) in the US.

• Random domains: This dataset contains 4,500 domains, randomly
picked, that do not belong to the previous categories.

The cumulative distribution function of the metric on these datasets is
shown in Figure 3. At score 60, we have 506 defaced domains, 698 XSSed
domains, 765 domains belonging to the random set, and only 5 banks. At
score 120, we have all the defaced and XSSed domains, 4,409 domains from
the random set, and all but 5 of the banking sites. The maximum score
recorded is 160, held by paypal.com. According to the metric, sites that
have been defaced or XSSed in the past appear to be maintained less than
our dataset of random domains. On the other hand, the majority of banking
institutions are very concerned with the maintenance of their domains. These
findings are reasonable, and empirically demonstrate that our metric is a
good indicator of the quality of maintenance of a particular host. This is
especially valid also because we will use this metric to classify hosts into
three wide categories: high maintenance (metric greater than 150), medium,
and low maintenance (metric lower than 70).

2.3.3 Risk of Including Third-Party Providers

We applied our QoM metric to the top 10,000 domains in Alexa and the
domains providing their JavaScript inclusions. The top-ranking domain is
paypal.com, which has also always been very concerned with security (e.g.,
it was one of the proposers of HTTP Strict Transport Security). The worst
score goes to cafemom.com, because its SSL certificate is not valid for that
domain (its CommonName is set to mom.com), and it is setting cookies non-
HTTPOnly, and not Secure. Interestingly, it is possible to login to the site
both in HTTPS, and in plain-text HTTP.

In Figure 4, we show the cumulative distribution function for the inclu-
sions we recorded. We can see that low-maintenance domains often include
JavaScript libraries from low-maintenance providers. High-maintenance do-
mains, instead, tend to prefer high-maintenance providers, showing that they

FP7-ICT-2009-5
Project No. 256964

paypal.com
paypal.com
cafemom.com
mom.com

D4.3: Secure Composition Policies and Server-driven Enforcement 33/158

Figure 3: Cumulative distribution function of the maintenance metric, for
different datasets

are indeed concerned about the providers they include. For instance, we can
see that the JavaScript libraries provided by sites with the worst maintenance
scores, are included by over 60% of the population of low-maintenance sites,
versus less than 12% of the population of sites with high-maintenance scores.
While this percentage is five times smaller than the one of low-maintenance
sites, still, about one out of four of their inclusions come from providers with
a low maintenance score, which are potential “‘weak spots”’ in their security
perimeter. For example, criteo.com is an advertising platform that is re-
motely included in 117 of the top 10,000 Alexa domains, including ebay.de
and sisal.it, the society that holds the state monopoly on bets and lot-
tery in Italy. criteo.com has an implementation of SSL that supports weak
ciphers, and a weak Diffie-Hellman ephemeral key exchange of 512 bits. An-
other example is levexis.com, a marketing platform, which is included in
15 of the top 10,000 Alexa websites, including lastminute.com, and has an
invalid SSL certificate.

2.4 Attacks
In this section, we describe four types of vulnerabilities that are related to
unsafe third-party inclusion practices, which we encountered in the analysis
of the top 10,000 Alexa sites. Given the right conditions, these vulnerabilities

FP7-ICT-2009-5
Project No. 256964

criteo.com
ebay.de
sisal.it
criteo.com
levexis.com
lastminute.com

D4.3: Secure Composition Policies and Server-driven Enforcement 34/158

Figure 4: Risk of including third-party providers, included in high and low
maintenance web applications.

enable an attacker to take over popular web sites and web applications.

2.4.1 Cross-user and Cross-network Scripting

In the set of remote script inclusions resulting from our large-scale crawling
experiment, we discovered 133 script inclusions where the “src” attribute of
the script tag was requesting a JavaScript file from localhost or from the
127.0.0.1 IP address. Since JavaScript is a client-side language, when a
user’s browser encounters such a script tag, it will request the JavaScript file
from the user’s machine. Interestingly, 131 out of the 133 localhost inclusions
specified a port (e.g., localhost:12345), which was always greater than
1024 (i.e., a non-privileged port number). This means that, in a multiuser
environment, a malicious user can set up a web server, let it listen to high
port numbers, and serve malicious JavaScript whenever a script is requested
from localhost. The high port number is important because it allows a user
to attack other users without requiring administrator-level privileges.

In addition to connections to localhost, we found several instances
where the source of a script tag was pointing to a private IP address (e.g.,
192.168.2.2). If a user visits a site with such a script inclusion, then her

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 35/158

browser will search for the JavaScript file on the user’s local network. If an
attacker manages to get the referenced IP address assigned to his machine,
he will be able to serve malicious JavaScript to the victim user.

We believe that both vulnerabilities result from a developer’s erroneous
understanding of the way in which JavaScript is fetched and executed. The
error introduced is not immediately apparent because, often times, these
scripts are developed and tested on the developer’s local machine (or net-
work), which also hosts the web server.

The set of domains hosting pages vulnerable to cross-user and cross-
network scripting, included popular domains such as virginmobileusa.com,
akamai.com, callofduty.com and gc.ca.

2.4.2 Stale Domain-name-based Inclusions

Whenever a domain name expires, its owner may choose not to renew it
without necessarily broadcasting this decision to the site’s user-base. This
becomes problematic when such a site is providing remote JavaScript scripts
to sites registered under different domains. If the administrators of the in-
cluding sites do not routinely check their sites for errors, they will not realize
that the script-providing site stopped responding. We call these inclusions
“stale inclusions”. Stale inclusions are a security vulnerability for a site, since
an attacker can register the newly-available domain and start providing all
stale JavaScript inclusion requests with malicious JavaScript. Since the vul-
nerable pages already contain the stale script inclusions, an attacker does not
need to interact with the victims or convince them to visit a specific page,
making the attack equivalent to a stored XSS.

To quantify the existence of stale JavaScript inclusions, we first compiled
a list of all JavaScript-providing domains that were discovered through our
large-scale crawling experiment. From that list, we first excluded all domains
that were part of Alexa’s top one million web sites list. The remaining 4,225
domains were queried for their IP address and the ones that did not resolve
to an address were recorded. The recorded ones were then queried in an
online WHOIS database. When results for a domain were not available, we
attempted to register it on a popular domain-name registrar.

The final result of this process was the identification of 56 domain names,
used for inclusion in 47 of the top 10,000 Internet web sites, that were, at the
time of our experiments, available for registration. By manually reviewing
these 56 domain names, we realized that in 6 cases, the developers mistyped
the JavaScript-providing domain. These form an interesting security issue,
which we consider separately in Section 2.4.4.

Attackers could register these domains to steal credentials or to serve

FP7-ICT-2009-5
Project No. 256964

virginmobileusa.com
akamai.com
callofduty.com
gc.ca

D4.3: Secure Composition Policies and Server-driven Enforcement 36/158

blogtools.us hbotapadmin.com
Visits 80,466 4,615

Including domains 24 4
Including pages 84 41

Table 6: Results from our experiment on expired remotely-included domains

malware to a large number of users, exploiting the trust that the target web
application puts in the hijacked domain. To demonstrate how easy and effec-
tive this attack is, we registered two domains that appear as stale inclusions
in popular web sites, and make them resolve to our server. We recorded the
Referer, source IP address, and requested URL for every HTTP request
received for 15 days. We minimized the inconvenience that our study might
have caused by always replying to HTTP requests with a HTML-only 404
Not Found error page, with a brief explanation of our experiment and how
to contact us. Since our interaction with the users is limited to logging the
three aforementioned pieces of data, we believe there are no ethical impli-
cations in this experiment. In particular, we registered blogtools.us, a
domain included on goldprice.org, which is a web application that moni-
tors the price of gold and that ranks 4,779th in the US (according to Alexa).
Previously, blogtools.us was part of a platform to create RSS feeds. We
also registered hbotapadmin.com, included in a low-traffic page on hbo.com,
which is an American cable television network, ranking 1,411th in the US.
hbotapadmin.com was once owned by the same company, and its registra-
tion expired in July 2010. The results of our experiment are shown in Ta-
ble 6. While hbotapadmin.com is being included exclusively by HBO-owned
domains, it is interesting to notice that blogtools.us is still included by
several lower-ranking domains, such as happysurfer.com, even though the
service is not available anymore.

2.4.3 Stale IP-address-based Inclusions

As described in Section 2.2, some administrators choose to include remote
scripts by addressing the remote hosts, not through a domain name but
directly through an IP address. While at first this decision seems suboptimal,
it is as safe as a domain-name-based inclusion, as long as the IP address of
the remote machine is static or the including page is automatically updated
whenever the IP address of the remote server changes.

To assess whether one of these two conditions hold, we manually visited all
299 pages performing an IP address-based inclusion, three months after our

FP7-ICT-2009-5
Project No. 256964

blogtools.us
hbotapadmin.com
blogtools.us
 goldprice.org
blogtools.us
hbotapadmin.com
hbo.com
hbotapadmin.com
hbotapadmin.com
blogtools.us
happysurfer.com

D4.3: Secure Composition Policies and Server-driven Enforcement 37/158

initial crawl. In the majority of cases, we recorded one of the following three
scenarios: a) the same scripts were included, but the host was now addressed
through a domain name, b) the IP addresses had changed or the inclusions
were removed or c) the IP addresses remained static. Unfortunately, in the
last category, we found a total of 39 IP addresses (13.04%) that had not
changed since our original crawl but at the same time, were not providing
any JavaScript files to the requests. Even worse, for 35 of them (89.74%)
we recorded a “Connection Timeout,” attesting to the fact that there was
not even a Web server available on the remote hosts. This fact reveals that
the remote host providing the original scripts either became unavailable or
changed its IP address, without an equivalent change in the including pages.

As in domain-name-based stale inclusions, these inclusions can be ex-
ploited by an attacker who manages to obtain the appropriate IP address.
While this is definitely harder than registering a domain-name, it is still a
vulnerability that could be exploited given an appropriate network configu-
ration and possibly the use of the address as part of a DHCP address pool.

2.4.4 Typosquatting Cross-site Scripting (TXSS)

Typosquatting [17, 29] is the practice of registering domain names that are
slight variations of the domains associated with popular web sites. For in-
stance, an individual could register wikiepdia.org with the intent of captur-
ing a part of the traffic originally meant to go toward the popular Wikipedia
website. The user that mistypes Wikipedia, instead of getting a “Server not
found” error, will now get a page that is under the control of the owner of the
mistyped domain. The resulting page could be used for advertising, brand
wars, phishing credentials, or triggering a drive-by download exploit against
a vulnerable browser.

Traditionally, typosquatting always refers to a user mistyping a URL in
her browser’s address bar. However, web developers are also humans and can
thus mistype a URL when typing it into their HTML pages or JavaScript
code. Unfortunately, the damage of these mistakes is much greater than in
the previous case, since every user visiting the page containing the typo will
be exposed to data originating from the mistyped domain. In Table 7, we
provide five examples of mistyped URLs found during our experiment for
which we could identify the intended domain.

As in the case of stale domain-names, an attacker can simply regis-
ter these sites and provide malicious JavaScript to all unintended requests.
We observed this attack in the wild: according to Google’s Safe Brows-
ing, worldofwaircraft.com has spread malware in January 2012. To prove
the efficacy of this attack, we registered googlesyndicatio.com (mistyped

FP7-ICT-2009-5
Project No. 256964

wikiepdia.org
worldofwaircraft.com
googlesyndicatio.com

D4.3: Secure Composition Policies and Server-driven Enforcement 38/158

Intended domain Actual domain
googlesyndication.com googlesyndicatio.com

purdue.edu purude.edu
worldofwarcraft.com worldofwaircraft.com

lesechos.fr lessechos.fr
onegrp.com onegrp.nl

Table 7: Examples of mistyped domains found in remote JavaScript inclusion
tags

googlesyndication.com), and logged the incoming traffic. We found this
domain because it is included in leonardo.it, an Italian online newspaper
(Alexa global rank: 1,883, Italian rank: 56). Over the course of 15 days,
we recorded 163,188 unique visitors. Interestingly, we discovered that this
misspelling is widespread: we had visitors incoming from 1,185 different do-
mains, for a total of 21,830 pages including this domain. 552 of the domains
that include ours belong to blogs hosted on *.blogspot.com.br, and come
from the same snippet of code: It seems that bloggers copied that code from
one another. This mistype is also long living: We located a page containing
the error, http://www.oocities.org/br/dicas.html/, that is a mirror of
a Brazilian Geocities site made in October 2009.

2.5 Countermeasures
In this section, we review two techniques that a web application can utilize
to protect itself from malicious remotely-included scripts. Specifically, we
examine the effectiveness of using a coarse-grained JavaScript sandboxing
system and the option of creating local copies of remote JavaScript libraries.

2.5.1 Sandboxing remote scripts

Recognizing the danger of including a remote script, researchers have pro-
posed a plethora of client-side and server-side systems that aim to limit the
functionality of remotely-included JavaScript libraries (see Section 2.6). The
majority of these countermeasures apply the principle of least privilege to
remotely-included JavaScript code. More precisely, these systems attempt
to limit the actions that can be performed by a remotely-included script to
the bare minimum.

The least-privilege technique requires, for each remotely-included Java-
Script file, a profile describing which functionality is needed when the script

FP7-ICT-2009-5
Project No. 256964

googlesyndication.com
leonardo.it
http://www.oocities.org/br/dicas.html/

D4.3: Secure Composition Policies and Server-driven Enforcement 39/158

is executed. This profile can be generated either through manual code inspec-
tion or by first allowing the included script to execute and then recording all
functions and properties of the Document Object Model (DOM) and Browser
Object Model (BOM) that the script accessed. Depending on the sandboxing
mechanism, these profiles can be either coarse-grained or fine-grained.

In a coarse-grained sandboxing system, the profile-writer instructs the
sandbox to either forbid or give full access to any given resource, such as
forbidding a script to use eval. Contrastingly, in a fine-grained sandboxing
system, the profile-writer is able to instruct the sandbox to give access to
only parts of resources to a remotely included script. For instance, using
ConScript [16], a profile-writer can allow the dynamic creation of all types of
elements except iframes, or allow the use of eval but only for the unpack-
ing of JSON data. While this approach provides significantly more control
over each script than a coarse-grained profile, it also requires more effort to
describe correct and exact profiles. Moreover, each profile would need to be
updated, every time that a remote script legitimately changes in a way that
affects its current profile.

Static and dynamic analysis have been proposed as ways of automatically
constructing profiles for sandboxing systems, however, they both have limi-
tations in the coverage and correctness of the profiles that they can create.
Static analysis cannot account for dynamically-loaded content, and dynamic
analysis cannot account for code paths that were not followed in the training
phase of the analysis. Moreover, even assuming a perfect code-coverage dur-
ing training, it is non-trivial to automatically identify the particular use of
each requested resource in order to transit from coarse-grained sandboxing
to fine-grained.

Given this complex, error-prone and time-consuming nature of construct-
ing fine-grained profiles, we wanted to assess whether coarse-grained pro-
files would sufficiently constrain popular scripts. To this end, we automati-
cally generated profiles for the 100 most included JavaScript files, discovered
through our crawl. If the privileges/resources required by legitimate scripts
include everything that an attacker needs to launch an attack, then a coarse-
grained sandboxing mechanism would not be an effective solution.

The actions performed by an included JavaScript file were discovered
using the following setup: A proxy was placed in between a browser and
the Internet. All traffic from the web browser was routed through the web
proxy [11], which we modified to intercept HTTP traffic and inject instru-
mentation code into the passing HTML pages. This instrumentation code
uses JavaScript’s setters and getters to add wrappers to certain sensi-
tive JavaScript functions and DOM/BOM properties, allowing us to monitor
their use. The browser-provided on-demand stack-tracing functionality, al-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 40/158

JS Action # of Top scripts
Reading Cookies 41
document.write() 36
Writing Cookies 30
eval() 28
XHR 14
Accessing LocalStorage 3
Accessing SessionStorage 0
Geolocation 0

Table 8: JavaScript functionality used by the 100 most popularly included
remote JavaScript files

lowed us to determine, at the time of execution of our wrappers, the chain
of function calls that resulted in a specific access of a monitored resource.
If a function, executed by a remote script, was part of this chain, then we
safely deduce that the script was responsible for the activity, either by di-
rectly accessing our monitored resources or by assisting the access of other
scripts.

For instance, suppose that a web page loads a.js and b.js as follows:� �
1 /* a.js */
2 function myalert (msg) {
3 window .alert(msg);
4 }� �� �
1 /* b.js */
2 myalert (" hello ");� �� �
1 /* stack trace */
2 b.js :1: myalert (...)
3 a.js :2: window .alert (...)� �
In a.js, a function myalert is defined, which passes its arguments to the
window.alert() function. Suppose b.js then calls myalert(). At the time
this function is executed, the wrapped window.alert() function is executed.
At this point, the stack trace contains both a.js and b.js, indicating that
both are involved in the call to window.alert() (a potentially-sensitive func-
tion) and thus both can be held responsible. These accesses can be straight-
forwardly transformed into profiles, which can then be utilized by coarse-
grained sandboxing systems.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 41/158

Using the aforementioned setup, we visited web pages that included the
top 100 most-included JavaScript files and monitored the access to sensitive
JavaScript methods, DOM/BOM properties. The results of this experiment,
presented in Table 8, indicate that the bulk of the most included JavaScr-
ipt files read and write cookies, make calls to document.write(), and dy-
namically evaluate code from strings. Newer APIs on the other hand, like
localStorage, sessionStorage and Geolocation, are hardly ever used,
most likely due to their relatively recent implementation in modern web
browsers.

The results show that, for a large part of the included scripts, it would be
impossible for a coarse-grained sandboxing system to differentiate between
benign and malicious scripts solely on their usage of cookie functionality. For
instance, a remotely-included benign script that needs to access cookies to
read and write identifiers for user-tracking can be substituted for a malicious
script that leaks the including site’s session identifiers. Both of these scripts
access the same set of resources, yet the second one has the possibility of
fully compromising the script-including site. It is also important to note
that, due to the use of dynamic analysis and the fact that some code-paths
of the executed scripts may not have been followed, our results are lower
bounds of the scripts’ access to resources, i.e., the tracked scripts may need
access to more resources to fully execute.

Overall, our results highlight the fact that even in the presence of a coarse-
grained sandboxing system that forbids unexpected accesses to JavaScript
and browser resources, an attacker could still abuse the access already white-
listed in the attacked script’s profile. This means that regardless of their
complexity, fine-grained profiles would be required in the majority of cases.
We believe that this result motivates further research in fine-grained sand-
boxing and specifically in the automatic generation of correct script profiles.

2.5.2 Using local copies

Another way that web sites can avoid the risk of malicious script inclusions is
by simply not including any remote scripts. To this end, a site needs to create
local copies of remote JavaScript resources and then use these copies in their
script inclusions. The creation of a local copy separates the security of the
remote site from the script-including one, allowing the latter to be unaffected
by a future compromise of the former. At the same time, however, this shifts
the burden of updates to the developer of the script-including site who must
verify and create a new local copy of the remote JavaScript library whenever
a new version is made available.

To quantify the overhead of this manual procedure on the developer of a

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 42/158

script-including web application, we decided to track the updates of the top
1,000 most-included scripts over the period of one week. This experiment
was conducted four months after our large-scale crawling experiment, thus
some URLs were no longer pointing to valid scripts. More precisely, from the
top 1,000 scripts we were able to successfully download 803. We started by
downloading this set three consecutive times within the same hour and com-
paring the three versions of each script. If a downloaded script was different
all three times then we assume that the changes are not due to actual up-
dates of the library, such as bug fixes or the addition of new functionality, but
due to the embedding of constantly-changing data, such as random tokens,
dates, and execution times. From this experiment, we found that 3.99% of
our set of JavaScript scripts, seem to embed such data and thus appear to
be constantly modified. For the rest of the experiment, we stopped tracking
these scripts and focused on the ones that were identical all three times.

Over a period of one week, 10.21% of the monitored scripts were mod-
ified. From the modified scripts, 6.97% were modified once, 1.86% were
modified twice, and 1.36% were modified three or more times. This shows
that while some scripts undergo modifications more than once a week, 96.76%
are modified at most once. We believe that the weekly manual inspection of
a script’s modified code is an acceptable tradeoff between increased mainte-
nance time and increased security of the script-including web application. At
the same time, a developer who currently utilizes frequently-modified remote
JavaScript libraries, might consider substituting these libraries for others of
comparable functionality and less frequent modifications.

2.6 Related Work
Measurement Studies To the best of our knowledge, there has been no
study of remote JavaScript inclusions and their implications that is of compa-
rable breadth to our work. Yue and Wang conducted the first measurement
study of insecure JavaScript practices on the web [31]. Using a set of 6,805
homepages of popular sites, they counted the sites that include remote Java-
Script files, use the eval function, and add more information to the DOM
of a page using document.write. Contrastingly, in our study, we crawled
more than 3 million pages of the top 10,000 popular web sites, allowing us
to capture five hundred times more inclusions and record behavior that is
not necessarily present on a site’s homepage. Moreover, instead of treating
all remote inclusions as uniformly dangerous, we attempt to characterize the
quality of their providers so that more trustworthy JavaScript providers can
be utilized when a remote inclusion is unavoidable.

Richards et al. [24] and Ratanaworabhan et al. [21] study the dynamic be-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 43/158

havior of popular JavaScript libraries and compare their findings with com-
mon usage assumptions of the JavaScript language and the functionality
tested by common benchmarks. However, this is done without particular
focus on the security features of the language. Richarts et al. [23] have also
separately studied the use of eval in popular web sites.

Ocariza et al. [13] performed an empirical study of JavaScript errors in
the top 100 Alexa sites. Seeking to quantify the reliability of JavaScript code
in popular web applications, they recorded errors falling into four categories:
“Permission Denied,” “Null Exception,” “Undefined Symbol” and “Syntax
Error.” Additionally, the authors showed that in some cases the errors were
non-deterministic and depended on factors such as the speed of a user’s
interaction with the web application. The authors did not encounter any of
the new types of vulnerabilities we described in Section 2.4, probably due to
the limited size of their study.

Limiting available JavaScript functionality Based on the characteri-
zation of used functionality, included JavaScript files could be executed in a
restricted environment that only offers the required subset of functionality.
As we showed in Section 2.5.1, a fine-grained sandboxing system is necessary
because of the inability of coarse-grained sandboxes to differentiate between
legitimate and malicious access to resources.

BrowserShield [22] is a server-side rewriting technique that replaces cer-
tain JavaScript functions to use safe equivalents. These safe equivalents are
implemented in the “bshield” object that is introduced through the Browser-
Shield JavaScript libraries and injected into each page. BrowserShield makes
use of a proxy to inject its code into a web page. Self-protecting Java-
Script [20, 15] is a client-side wrapping technique that applies wrappers
around JavaScript functions, without requiring any browser modifications.
The wrapping code and policies are provided by the server and are executed
first, ensuring a clean environment to start from.

ConScript [16] allows the enforcement of fine-grained security policies
for JavaScript in the browser. The approach is similar to self-protecting
JavaScript, except that ConScript modifies the browser to ensure that an
attacker cannot abuse the browser-specific DOM implementation to find an
unprotected access path. WebJail [28] is a client-side security architecture
that enforces secure composition policies specified by a web-mashup integra-
tor on third-party web-mashup components. Inspired by ConScript, WebJail
modifies the Mozilla Firefox browser and JavaScript engine, to enforce these
secure composition policies inside the browser. The new “sandbox” attribute
of the iframe element in HTML5 [10] provides a way to limit JavaScript func-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 44/158

tionality, but it is very coarse-grained. It only supports limited restrictions,
and as far as JavaScript APIs are concerned, it only supports to completely
enable or disable JavaScript.

ADJail [27] is geared toward securely isolating ads from a hosting page for
confidentiality and integrity purposes, while maintaining usability. The ad
is loaded on a shadow page that contains only those elements of the hosting
page to which the web developer wishes the ad to have access. Changes to the
shadow page are replicated to the hosting page if those changes conform to
the specified policy. Likewise, user actions on the hosting page are mimicked
to the shadow page if allowed by the policy.

FlowFox [7] uses the related technique of secure multi-execution [8] to
execute arbitrary included scripts with strong guarantees that these scripts
can not break a specified confidentiality policy.

Content Security Policy (CSP) [26] is a mechanism that allows web ap-
plication developers to specify from which locations their web application is
allowed to load additional resources. Using CSP, a web application could
be limited to only load JavaScript files from a specific set of third-party
locations. In the case of typos in the URL, a CSP policy not containing
that same typo will prevent a JavaScript file from being loaded from that
mistyped URL. Cases where a JavaScript-hosting site has been compromised
and is serving malicious JavaScript however, will not be stopped by CSP.

AdSentry [9] is a confinement solution for JavaScript-based advertisement
scripts. It consists of a shadow JavaScript engine which is used to execute
untrusted JavaScript advertisements. Instead of having direct access to the
DOM and sensitive functions, access from the shadow JavaScript engine is
mediated by an access control policy enforcement subsystem.

2.7 Conclusion
Web sites that include JavaScript from remote sources in different adminis-
trative domains open themselves to attacks in which malicious JavaScript is
sent to unsuspecting users, possibly with severe consequences. In this paper,
we extensively evaluated the JavaScript remote inclusion phenomenon, an-
alyzing it from different points of view. We first determined how common
it is to include remote JavaScript code among the most popular web sites
on the Internet. We then provided an empirical evaluation of the quality-
of-maintenance of these “code providers,” according to a number of indica-
tors. The results of our experiments show that indeed there is a considerable
number of high-profile web sites that include JavaScript code from external
sources that are not taking all the necessary security-related precautions and
thus could be compromised by a determined attacker. As a by-product of our

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 45/158

experiments, we identified several attacks that can be carried out by exploit-
ing failures in the configuration and provision of JavaScript code inclusions.
Our findings shed some light into the JavaScript code provider infrastructure
and the risks associated with trusting external parties in implementing web
applications.

References
[1] Apache.org. https://blogs.apache.org/infra/entry/apache_org_

04_09_2010.

[2] Qtip compromised. https://github.com/Craga89/qTip2/issues/
286.

[3] SSL Labs Server Rating Guide. https://www.ssllabs.com/
downloads/SSL_Server_Rating_Guide_2009.pdf.

[4] Wayback Machine. http://archive.org.

[5] Alexa - Top sites on the Web. http://www.alexa.com/topsites.

[6] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and
Christopher Kruegel. A solution for the automated detection of click-
jacking attacks. In Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS ’10, pages
135–144, 2010.

[7] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank
Piessens. FlowFox: a Web Browser with Flexible and Precise Informa-
tion Flow Control. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2012.

[8] Dominique Devriese and Frank Piessens. Noninterference Through Se-
cure Multi-Execution. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, pages 109–124, 2010.

[9] Xinshu Dong, Minh Tran, Zhenkai Liang, and Xuxian Jiang. AdSentry:
comprehensive and flexible confinement of JavaScript-based advertise-
ments. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, ACSAC ’11, pages 297–306, New York, NY, USA,
2011. ACM.

FP7-ICT-2009-5
Project No. 256964

https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://github.com/Craga89/qTip2/issues/286
https://github.com/Craga89/qTip2/issues/286
https://www.ssllabs.com/downloads/SSL_Server_Rating_Guide_2009.pdf
https://www.ssllabs.com/downloads/SSL_Server_Rating_Guide_2009.pdf
http://archive.org
http://www.alexa.com/topsites

D4.3: Secure Composition Policies and Server-driven Enforcement 46/158

[10] I. Hickson and D. Hyatt. HTML 5 Working Draft - The sandbox At-
tribute. http://www.w3.org/TR/html5/the-iframe-element.html#
attr-iframe-sandbox, June 2010.

[11] Suzuki Hisao. Tiny HTTP Proxy in Python. http://www.okisoft.co.
jp/esc/python/proxy/.

[12] Payment Card Industry. (Approved Scanning Vendor) Pro-
gram Guide. https://www.pcisecuritystandards.org/pdfs/asv_
program_guide_v1.0.pdf.

[13] Frolin Ocariza Jr., Karthik Pattabiraman, and Benjamin Zorn. Java-
script errors in the wild: An empirical study. In Proceedings of the 22nd
International Symposium on Software Reliability Engineering (ISSRE),
pages 100 –109, 2011.

[14] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian
Seifert. Rozzle: De-cloaking internet malware. In IEEE Symposium on
Security and Privacy, May 2012.

[15] J. Magazinius, P. Phung, and D. Sands. Safe wrappers and sane policies
for self protecting JavaScript. In The 15th Nordic Conf. in Secure IT
Systems. Springer Verlag, 2010.

[16] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying and en-
forcing fine-grained security policies for Javascript in the browser. In
IEEE Symposium on Security and Privacy, May 2010.

[17] Tyler Moore and Benjamin Edelman. Measuring the perpetrators and
funders of typosquatting. In Proceedings of the 14th international con-
ference on Financial Cryptography and Data Security, FC’10, pages 175–
191, Berlin, Heidelberg, 2010. Springer-Verlag.

[18] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven
Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. You are what you include: Large-scale evaluation of
remote javascript inclusions. In Proceedings of the 19th ACM conference
on Computer and Communications Security (CCS 2012), pages 736–747,
October 2012.

[19] OWASP. "cross-site scripting (xss)". https://www.owasp.org/index.
php/XSS.

FP7-ICT-2009-5
Project No. 256964

http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox
http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox
http://www.okisoft.co.jp/esc/python/proxy/
http://www.okisoft.co.jp/esc/python/proxy/
https://www.pcisecuritystandards.org/pdfs/asv_program_guide_v1.0.pdf
https://www.pcisecuritystandards.org/pdfs/asv_program_guide_v1.0.pdf
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS

D4.3: Secure Composition Policies and Server-driven Enforcement 47/158

[20] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight self-
protecting JavaScript. In Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, ASI-
ACCS ’09, pages 47–60, New York, NY, USA, 2009. ACM.

[21] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JS-
Meter: comparing the behavior of JavaScript benchmarks with real web
applications. In Proceedings of the 2010 USENIX conference on Web
application development, WebApps’10, pages 3–3, Berkeley, CA, USA,
2010. USENIX Association.

[22] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and
Saher Esmeir. BrowserShield: vulnerability-driven filtering of dynamic
HTML. In OSDI ’06: Proceedings of the 7th symposium on Operating
Systems Design and Implementation, pages 61–74, Berkeley, CA, USA,
2006. USENIX Association.

[23] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The
eval that men do: A large-scale study of the use of eval in javascript
applications. In Proceedings of the 25th European conference on Object-
oriented programming, ECOOP’11, pages 52–78, Berlin, Heidelberg,
2011. Springer-Verlag.

[24] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of javascript programs. In Proceedings
of the 2010 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’10, pages 1–12, New York, NY, USA, 2010.
ACM.

[25] David Ross. IE8 Security Part IV: The XSS Fil-
ter. http://blogs.msdn.com/b/ie/archive/2008/07/02/
ie8-security-part-iv-the-xss-filter.aspx.

[26] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web
with content security policy. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 921–930, New York,
NY, USA, 2010. ACM.

[27] Mike Ter Louw, Karthik Thotta Ganesh, and V.N. Venkatakrishnan.
AdJail: Practical Enforcement of Confidentiality and Integrity Policies
on Web Advertisements. In Proceedings of the 19th USENIX Security
Symposium, August 2010.

FP7-ICT-2009-5
Project No. 256964

http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx

D4.3: Secure Composition Policies and Server-driven Enforcement 48/158

[28] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens,
and Wouter Joosen. Webjail: least-privilege integration of third-party
components in web mashups. In Proceedings of the 27th Annual Com-
puter Security Applications Conference, ACSAC ’11, pages 307–316,
New York, NY, USA, 2011. ACM.

[29] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad
Daniels. Strider typo-patrol: discovery and analysis of systematic typo-
squatting. In Proceedings of the 2nd conference on Steps to Reducing
Unwanted Traffic on the Internet - Volume 2, SRUTI’06, pages 5–5,
Berkeley, CA, USA, 2006. USENIX Association.

[30] XSSed | Cross Site Scripting (XSS) attacks information and archive.

[31] Chuan Yue and Haining Wang. Characterizing insecure JavaScript prac-
tices on the web. In Proceedings of the 18th international conference on
World wide web, WWW ’09, pages 961–970, New York, NY, USA, 2009.
ACM.

[32] Kim Zetter. Google Hack Attack Was Ultra Sophisticated,
New Details Show. http://www.wired.com/threatlevel/2010/01/
operation-aurora/.

[33] Zone-H: Unrestricted information. http://zone-h.org/.

FP7-ICT-2009-5
Project No. 256964

http://www.wired.com/threatlevel/2010/01/operation-aurora/
http://www.wired.com/threatlevel/2010/01/operation-aurora/
http://zone-h.org/

D4.3: Secure Composition Policies and Server-driven Enforcement 49/158

3 A Two-Tier Sandbox Architecture for Un-
trusted JavaScript45

3.1 Introduction
Embedding external content into web pages is becoming more and more pop-
ular. A recent report [1] shows that 97% of Fortune 500 web sites display
content from external partners using e.g. JavaScript widget providers, ad net-
works, or packaged software providers. Typically, a web master of a hosting
page needs to trust the external JavaScript code before inserting it to the
page since the external JavaScript (mashup) code run in the context of the
hosting page. However sometimes this trust can be misplaced. In Septem-
ber 2009, readers of the New York Times website faced a fake virus infection
pop-up which directs the readers to a web page that claims to offer anti-virus
software. The attack happened because the external content, e.g. the ad, is
normally fetched dynamically from an external source by the user’s browser
[25], which is not under the control of the hosting page.

There have been a number of solutions proposed dealing with untrusted
JavaScript code, such as Google Caja [17], Facebook JavaScript [4], AD-
safe [2] and Conscript [16], and so on. However, we identified some important
limitations with the current state of the art as will be discussed in more de-
tail in Section 3.2. In particular, most of the approaches require (1) browser
modifications or server-side pre-processing e.g. static validation, filtering, or
transformation of the untrusted JavaScript, limiting the deployment capabil-
ities, or (2) restrict the expressiveness of the enforcement to coarse-grained
access control policies.

To achieve both the expressiveness of security policies as well as easy of
deployment of our secure integration architecture, we propose a client-side
security architecture that enforces fine-grained, stateful security policies for
untrusted JavaScript code but does not require pre-processing of the code
nor browser modification. This client-side security architecture is realized
by means of a two-tier sandbox architecture: a generic, coarse-grained sand-

4This paper has been published as [19]: Phu H. Phung, Lieven Desmet, A two-tier
sandbox architecture for untrusted JavaScript, Proceedings of the Workshop on JavaScript
Tools (JSTools ’12), pages 1-10, Beijing, China, 13 June 2012

5This research is funded by the EU FP7 WebSand project. Thanks to David Sands
and Andrei Sabelfeld for their feedback and helpful comments. Part of this work was
performed while the first author was visiting Stanford hosted by John Mitchell. The
first author would like to thank John Mitchell, Ankur Taly, and Mark Miller for their
discussions. For the second author, this work was also partially funded by the EU FP7
NESSoS project, the Interuniversity Attraction Poles Programme Belgian State, Belgian
Science Policy, and by the Research Fund KU Leuven.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 50/158

box provides strong baseline isolation guarantees, whereas a second sandbox
enables fine-grained, stateful policy enforcement specific to a particular un-
trusted application. The application-specific policy enforcement code is exe-
cuted within an outer sandbox environment which guarantees that it – even
if subverted or badly written – will still adhere to some general security poli-
cies provided by the baseline isolation of the outer sandbox, and e.g. does
not give unauthorized access to sensitive resources or unintentionally leak
unprotected references.

We have developed a prototype implementation of the proposed two-tier
sandbox architecture, leveraging on recent developments in ECMAScript 5,
a new JavaScript specification. For the sandboxing technology, we have built
upon an existing open-source JavaScript library [3]. This library applies the
strict mode of ECMAScript 5, and allows to load and execute untrusted code
dynamically in a sandbox environment. The fined-grained policy enforcement
is a modified version of our lightweight self-protecting JavaScript mechanism
[20, 14], and improves upon the earlier work by achieving strong security
guarantees and being able to deal with untrusted code. The policies express
access control restrictions for both method calls as well as property accesses,
and are expressed in pure JavaScript so that a policy writer can easily express
stateful and fine-grained policies.

Our proposed architecture improves upon the state-of-the-art since it does
not depend on browser modification nor transformation of client-side code,
and allows the secure enforcement of fine-grained, stateful access control
policies for untrusted JavaScript. The solution enables application-specific
policy enforcement, even if multiple third-party applications are loaded on
the same page. We have applied the prototype implementation to a set of
mashup components, and a representative online advertisement case study
to validate the feasibility and security of the proposed architecture.

Organization The rest of this paper is written as follows. The next section
briefly sketches the challenges for securely integrating third-party JavaScript,
and expresses the requirements for a client-side security architecture. Section
3.3 proposes the two-tier enforcement architecture for policy enforcement
of untrusted code on an API in sandbox compartments. We present the
prototype implementation of the architecture in Section 3.4. In Section 3.5
we present our design for specifying fine-grained policies. The validation of
the prototype are presented and discussed in Section 3.6. Discussion and
future work are given in Section 3.8.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 51/158

3.2 Problem statement
The state-of-practice technique to integrate third-party scripts in webpages
is via script inclusion [23]. By doing so, the browser will execute the code as
if it part of the original webpage, without any restrictions of the Same-Origin
Policy. As a side effect, the third-party code executes in the same JavaScript
context, and has access to all the code and data of the integrating webpage.

This is clearly not desirable in case the third-party JavaScript is malicious
or can not be trusted. But even if the external party is trustworthy at the
moment of website construction, the partner can become malicious over time,
or be the victim of an attacker by itself. As a result, if an attacker controls
the integrated script, he has full control over the hosting website and can
perform unwanted actions on behalf of the website owner as well as website
visitors.

Therefore, several countermeasures have been proposed [22, 13, 11, 20,
16, 12] and some of them are widely adopted [17, 4, 2]. Section 3.7 discusses
various solutions in more detail, but in this section we briefly highlight two
important shortcomings in the current state-of-the-art: the ease of deploy-
ment and the expressiveness of security policies.

Ease of deployment There are several modes of deployment, each with
their own characteristics. The most invasive set of solutions require client-
side modifications [18, 16, 26], which strongly limits the adoption of the
solution, and requires web users to install additional extensions or custom-
build browsers. Other solutions requires server-side pre-processing (such as
filtering, transforming or wrapping untrusted code) [11] or impose restrictions
to the third-party code to adhere to safe subset of JavaScript [4, 2, 12].

Both browser modification and pre-processing approaches make the de-
ployment more difficult, and differ from the state-of-practice setting in which
a legacy browser fetches JavaScript code directly from the external partner.

Expressiveness Most of available solutions only allow coarse-grained ac-
cess control policies to be specified. Facebook JavaScript [4], ADsafe [2], and
Google Caja [17] for instance only allow to enforce general coarse-grained
policies for untrusted JavaScript. Alternative solutions providing fine-grained
policy enforcement rely however on client-side modifications [18, 16, 26] or
server-side pre-processing [11].

Another key issue in policy enforcement is that writing fine-grained, state-
ful policies can be hard and error-prone, and attackers can subvert defective
policies to bypass the enforcement [16, 14]. One approach to tackling this
issue is to constrain the way that policies are written, however it limits the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 52/158

expressiveness of policies. For instance, WebJail [26] constrains policies to
whitelists to avoid ‘inverse sandbox ’ attacks. Designing a specific policy
language which can construct a suitable static type system to ensure the
correctness of policies [16] but this typically also requires modifications to
the browser.

Requirements

As stated before, the current set of secure integration techniques for third-
party JavaScript either rely on browser modification or code pre-processing,
or strongly limits the expressiveness of the security policies. To achieve an
expressive and easy-deployable client-side security architecture, we therefore
propose the following requirements:

R1. The client-side security architecture should be able to cope with fine-
grained security and/or stateful security policies.
For instance, a policy developer should be able to express that (1)
only a subset of security-sensitive operations can be used, (2) that
certain functions only can be called if the arguments satisfy additional
constraints (e.g. appear in a whitelist), and (3) that no cross-origin
requests may be sent out after user-supplied input has been received
(e.g. as part of a form).

R2. To ease the deployment of the security architecture, the solution should
not require any modification of the browser, nor should depend on
server-side pre-processing of the untrusted JavaScript code.
By targeting mainstream browsers, the solution can be deployed with-
out additional effort of the end-user (such as downloading a specific
browser extension or custom-build browser). Without the need for
code pre-processing, the state-of-practice integration technique can be
preserved to directly embed external scripts in the browser.

R3. The client-side security architecture provides complete mediation in ac-
cessing security-sensitive operations. Irrespectively of how the security-
sensitive operation gets called, the security policies is always applied.

R4. The client-side security architecture must be robust to potential flaws
in security policies.
Since the process of writing fine-grained and/or stateful security poli-
cies can be error-prone [15, 16, 14], the security architecture must be
able to limit the elevation of privileges in case a security check can be
circumvented due to a policy flaw.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 53/158

3.3 Two-tier sandbox architecture
The main purpose of the client-side security architecture is to build a sandbox
environment, in which untrusted scripts can run securely. In such a sandbox
environment, all accesses to security-sensitive operations are mediated, and
are controlled via a security policy.

Two-tier approach

Since writing fine-grained and/or stateful security policies can be hard and
error-prone, especially for rich environment such as client-side web script-
ing, we propose a two-tier sandbox architecture. The architecture protects
security-sensitive operations by nesting two sandbox environments, as de-
picted in Fig. 5: a generic, coarse-grained outer sandbox provides strong
baseline isolation guarantees, whereas a second sandbox enables fine-grained,
stateful policy enforcement specific to a particular untrusted application.

Sandbox running
untrusted code,

defined in a
separate file e.g.

`untrusted.js’

Sandbox running policy
code, defined in a
separate file e.g. `policy.js’

Base-line API
implementation,
in e.g. `api.js’ file

JavaScript
environment,
i.e. the DOM

The policy code can only
access the base-line API and
provided wrapper functions

The untrusted code can only
access objects returned by
the enforcement sandbox

Figure 5: The two-tier sandbox architecture

Our motivation for the architecture is that giving a limited set of al-
lowed operations as coarse-grained policy, a policy developer can define ad-
ditional, fine-grained restrictions. Hereby, the policy developer can focus on
the application-specific policy, rather that coping with the technicalities of
achieving the basic set of restrictions and complete mediation.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 54/158

Outer sandbox The outer sandbox provides a reusable sandboxing layer
that enforces coarse-grained security policies, i.e. the outer sandbox limits
the set of security-sensitive operations and properties available to the inner-
sandbox.

By separating this functionality as a separate and reusable sandbox, the
two-tier architecture is able to provide strong baseline guarantees, irrespec-
tively of eventual policy flaws in the inner sandbox.

Also the quite challenging effort of achieving complete mediation in a
JavaScript environment [20, 14] can be easily reused over multiple instanti-
ations. Once the outer sandbox achieves complete mediation to a particular
security-sensitive operation, this complete mediation is automatically inher-
ited by any inner sandbox.

Inner sandbox The inner sandbox enforces additional application-specific
constraints upon access to security-sensitive operations or properties. Since
the baseline guarantees are already provided by the outer sandbox, the inner
sandbox can provide an expressive policy environment to the policy writer,
allowing him to express fine-grained and/or stateful security policies specific
to an untrusted application.

In the remainder of this paper, we will focus on fine-grained access control
policies, but the proposed security architecture can also be interesting to
enforce usage control policies or information flow control policies.

Loading the security architecture Loading the security architecture
works as follows. First, the outer sandbox, mediating access between the
inner sandbox and the hosting page, loads itself and makes a limited set
of security-sensitive operations available to the inner sandbox according to
the coarse-grained policy. Next, the inner sandbox loads the untrusted
JavaScript code into the second sandbox environment, in which accesses to
security-sensitive operations are mediated by the application-specific security
policy.

By doing so, accesses from untrusted JavaScript to security-sensitive oper-
ations first pass the application-specific policy enforcement of the inner sand-
box. Upon approval of the application-specific policy, the call is delegated
to the coarse-grained policy enforcement of the outer sandbox. This defense-
in-depth approach ensures that the two-tier sandbox architecture, even if
application-specific policy get subverted, can always guarantee coarse-grained
isolation provided by the reusable outer sandbox, and therefore cannot unin-
tentionally provide accesses to security-sensitive operations or properties on
the hosting page.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 55/158

3.4 Prototype implementation
The prototype implementation of the two-tier sandbox architecture consists
of two parts: the security architecture realizing the sandboxing of untrusted
code, and the fine-grained policy enforcement mechanism. For realizing the
sandbox architecture purely in JavaScript, we employ a sandbox library
namely Secure ECMAScript (SES) [3], developed in ECMAScript 5 by the
Google Caja Team.

In this section, we briefly introduce the SES sandbox library and then
present our prototype implementation of the architecture which is built on
top of the SES library. The fine-grained policy enforcement mechanism is
discussed in more detail in Section 3.5.

3.4.1 The Secure ECMAScript 5 sandbox library (SES)

Features of the current JavaScript language conspire to make sandboxing
nontrivial, and sandboxing untrusted JavaScript code normally requires com-
plex filtering, transforming and wrapping untrusted code to restrict the code
to a manageable subset [12]. The ECMAScript 5 specification, released by
the ECMA committee in December 2009, has been modified to make sand-
boxing easier and more widely applicable. ECMAScript 5 (ES5) is a new
standard specification of JavaScript language which represents, from a se-
curity perspective, a huge improvement over the previous (current) spec-
ification, ECMAScript 3. Besides new features such as providing a way
(Object.defineProperty method) to emulate platform objects, or provid-
ing new APIs, ES5 provides more robust programming to write secure Java-
Script. Firstly, objects in ES5 can be frozen such that the frozen objects are
tamper-proof. Secondly, isolation problems in ES3 are solved in ES5 strict
mode, a restricted subset of ES5. The strict mode creates a restriction on
ES5 language to archive two isolation properties: static lexical scope, and no
encapsulation leak. Strict mode provides complete and static lexical scop-
ing by disallowing deletes on variable names, no prototype chain for scope
objects, disallowing with statements, which provide a mechanism to insert
scope objects. In ES3 and most current browsers, there are several chan-
nels that untrusted code running within a restricted closure can access the
global object by referring to the implicit this parameter, or access criti-
cal resources by abusing caller-chain. ES5’s strict mode repairs these leaks
by disallowing these channels to ensure no encapsulation leaks in a closure.
These restrictions can plug encapsulation leaks that happen in ES3 so that
make it possible to implement safe closure-based encapsulation.

Secure ECMAScript 5 (SES) is a sandbox library, developed in ES5 strict

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 56/158

mode, that enables the construction of a sandbox without the need for server-
side transformation or pre-processing. The main goal of the library is to make
untrusted code run inside an isolated environment so that the untrusted code
cannot access global variables and the global object but can only have access
to the whitelist built-in objects, a provided API (which is essentially mediat-
ing access to security-sensitive operations) and the objects created by itself.
We refer the readers to [24] for the full detail of the library together with its
semantics and soundness. Giving a piece of untrusted code represented as a
string variable untrustedCodeSrc with an API api, once the SES library is
initiated in a web page (frame), a sandbox environment can be constructed
in the frame as illustrated as follows.

1 var api = { . . . } ; // con s t ru c t i ng
2 var makeSandbox =
3 cajaVM . compileModule (untrustedCodeSrc) ;
4 var sandboxed = makeSandbox (api) ;

3.4.2 The two-tier sandbox architecture prototype

Built on top of the SES sandbox library, our two-tier sandbox architecture
consists of two nested sandbox compartments. As shown in Fig. 5, we assume
that the baseline API is developed in a separated file ‘api.js’, the policy code
is specified in ‘policy.js’ file, and the untrusted code is retrieved from a third-
party site and stored at the hosting server in ‘untrusted.js’ file6. Listing 4
illustrates the deployment of the architecture. In this listing, the api variable
is the baseline API, constructed in the ‘api.js’ file (included in the hosting
page by a <script> tag as normal); the ‘policy.js’ and ‘untrusted.js’ files are
loaded (using XMLHtmlRequest) into the policyCode and untrustedCode
variables, respectively.

Creating the baseline API The outer sandbox relies on a baseline API
being provided, and we assume that such a baseline API is available (and
verified as in e.g. [24, 21]). Given such a baseline API, our architecture
realizes modular and fine-grained policy enforcement on top of such a coarse-
grained API in a secure manner. Constructing such an API is not a simple

6We use this method to get untrusted code in order to load at runtime using
XMLHtmlRequest. An alternative method is to use the Uniform Messaging Policy (see:
http://www.w3.org/TR/UMP/) to request the code directly from the third-party site
(cross domain).

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 57/158

1 var outerSandbox = cajaVM . compileModule (pol icyCode) ;
2 var enforcedAPI = outerSandbox (api) ;
3 load_untrustedCode (enforcedAPI) ;
4 func t i on load_untrustedCode (api) {
5 var innerSandbox = cajaVM . compileModule (untrustedCode) ;
6 innerSandbox (api) ;
7 }

Listing 4: The structure of two-tier sandbox architecture

task and out of scope for this paper, but we like to refer to ongoing efforts
such as the DOMADO library as part of the Google Caja project.

To validate the results in this paper, we opted to construct a proof-of-
concept API which mediates selected accesses to the DOM. This API has
been realized as follows.

Firstly, we virtualize a critical object by creating a constructor function
and store the original critical object in a reference map pointing to the con-
structor itself (virtualization is a known technique which has been employed
in e.g. Domita [17] or ADsafe [2]). The map object is out of the scope of
the constructor function, therefore it is inaccessible from the untrusted code.
This can avoid a transformation or static validation of untrusted code as
performed in e.g. Domita or ADsafe to prevent untrusted code access special
variables storing original critical objects. We use the WeakMap implemen-
tation in the SES library [3] to keep such references.

Secondly, we have built the prototype of the constructors with methods
and properties having the same name of those of critical objects. In each
method or property, we can check the arguments and enforce a static policy
to ensure some security properties before invoking or returning the original
method or property retrieved from the reference map. The returned object
by the original method is also mediated to ensure the complete mediation.
Arguments of a method call are also wrapped so that no side-effects can
happen.

3.4.3 Tamper-proofing Arguments

Our architecture is based on sandbox compartments in a SES environment of
which the soundness and confinement have been proved [24]. The capability
of untrusted code, therefore, is confined by the API provided by the enforced
objects and the sandbox environment. It means that the untrusted code
within the sandbox cannot access arbitrary references except the enforced
API.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 58/158

In a SES environment, built-in objects are frozen so that untrusted code
cannot modify a built-in prototype to launch prototype poisoning attack on
policy enforcement code. Prototype poisoning is an attack vector in which the
attacker can compromise trusted code by modifying a global prototype that
is inherited by the trusted code [15, 14]. Our enforced objects are protected
by using Object.seal(obj) in ES5 so that existing properties of the object
become non-configurable, i.e. no property descriptors can be changed, and
no properties can be deleted. This is an important improvement since in
Mozilla, deleting a wrapped object recovers the original object [20].

3.5 Fine-grained Policy Definition and Enforcement
The main goal of our two-tier sandbox architecture is to define and enforce
stateful, fine-grained security policies specifically to a piece of untrusted Java-
Script code. As mentioned briefly in introduction, we adopt the lightweight
self-protecting JavaScript proposed in [20] for policy enforcement in the inner
sandbox in our two-tier sandbox architecture. Security policies in this mecha-
nism are defined in pure JavaScript language in aspect-oriented programming
(AOP) style so that they can express stateful and fine-grained policies. Al-
though the self-protecting JavaScript method provides a way to specify and
enforce fine-grained policies, it does consider the whole page as untrusted
code, except for the policy code itself7, and therefore cannot be used to de-
fine modular policies for portions of untrusted code within a page. In this
work we adapt this enforcement mechanism to fit on our two-tier sandbox
architecture. Moreover, the implementation of [20] is in current JavaScript
specification and faced some vulnerabilities which have been patched in later
work [14]. We revisit and revise the issues addressed in [14] to fit in the
implementation in the new context of ES5.

Similar to [20], policy enforcement mechanism in this work mediate access
to security-sensitive methods and fields. A policy for such a mediator defines
if the access is allowed, rejected or modified according to a further policy.
Within policy code, a policy writer can define helper functions and variables
as security states to keep some execution history of the code, or as some
sensitive information such as whitelists. The basic idea of the enforcement
is first to keep the reference to the method or property to be mediated, and
then execute the policy which decides whether to allow access on the original
method or property. Differing from [20], this enforcement is executed within
a sandbox environment, therefore local variables and functions are protected.

7The policy code is injected into the header of the page to ensure that the policy
code is executed first in order to wrap the security critical methods before the untrusted
(attacker) code can get a handle on them

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 59/158

Moreover, the enforced object is sealed in ES58 so that it cannot be deleted.
We present in detail the enforcement for method invocation and property
access.

3.5.1 Policy Definition

A policy for method invocation defines whether or not the invocation may
proceed depending on some conditions. In our enforcement model, a condi-
tion could be based on security states, patterns such as whitelists, and the
value of the arguments. We propose two types of policy definition: (1) prop-
erty access policy and (2) method invocation policy since an object in an API
contains properties and methods proxying accesses to the real corresponding
object.

1 var document_policy={
2 getElementById : {
3 method : func t i on (args , proceed) {
4 var id = args [0] ;
5 i f (id === ’main ’) {
6 re turn proceed (div_Main_policy) ;
7 }
8 / / . . more ca s e s
9 } ,
10 args : [’ s t r i ng ’]
11 }
12 // other p r op e r t i e s and methods ’ d e f i n i t i o n
13 }
14 var div_Main_policy = {
15 s t y l e : {
16 property : {
17 read : func t i on () { re turn div_M_style ; } ,
18 wr i t e : f unc t i on (va lue) { re turn f a l s e ; }
19 } ,
20 args : [’ ∗ ’]
21 }
22 // p r op e r t i e s and methods ’ p o l i c y d e f i n i t i o n
23 }
24 var div_M_style=. .// f u r t h e r po l i c y

Listing 5: A policy example for an API object

A property access policy includes read and write policy defined in cor-
8In ES5, sealing an object by e.g. Object.seal(obj) can set all existing properties of the

obj object to non-configurable, i.e. all property descriptors cannot be changed and all the
properties cannot be deleted.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 60/158

responding functions which returns a boolean value or an object indicating
access permission. In the write function, the value argument is the real
value assigning to the property at runtime, which the policy can inspect be-
fore writing. Note that these values might be further constrained by some
general policies e.g. sanitizing HTML content, in the baseline API, i.e. by the
outer sandbox. In the read function, we can define further restrictions on the
returned value by returning a policy predefined in an object variable which
is enforced further on the value. These policies are stateful in which security
states can be defined and updated runtime to be used by the policies.

A method invocation policy of a specific object is defined in a function
with two parameters function(args,proceed){..}, where args contains
the arguments of the invocation, and proceed is the function to control the
execution of the original method. Calling the proceed(..) function will allow
the original method to be executed. Our policy definition proposal provides
a systematic way to write fine-grained and stateful policies depending on
invocation arguments (first parameter in the policy function) and security
states (can be encoded in variables) at runtime. If the original method re-
turns an object, the object must be enforced by a predefined policy to ensure
full mediation. Based on the above assumption on a return object of API call
is safe and the fact that the policy writer knows exactly the type of the re-
turned object and which policy should be enforced on the returned object, we
provide a way to define this recursive enforcement by calling the proceed(..)
function with one parameter as the desired policy. This implementation fea-
ture is different from [20] because we enforce policies on API objects while
the implementation in [20] enforces policies on built-in methods. Listing 5
illustrates a policy example on an API object including a method invocation
policy (getElementById in document_policy) that recursively enforces a
further policy (div_Main_policy) on the return value, and a property access
policy (style in div_Main_policy).

Inspecting arguments As mentioned, a policy may need to inspect the
invocation arguments, security states, and/or patterns such as whitelists. As
pointed out in our recent work [20, 14], arguments in JavaScript are non-
declarative, thus could be the source of attacks [20, 14, 11, 16, 15] because
of implicit type conversion in JavaScript when a policy inspects arguments
provided by untrusted code. In our previous work [14], we proposed a way
to define and enforce declarative arguments by coercing each argument value
based on a declared type to ensure that the value when inspecting is the
same value when using the argument. This declarative argument approach
is applied in this work: the types of the arguments are declared in the args

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 61/158

field in policy code as e.g. in Listing 5.
Only argument elements declared by the type array can be inspected by

the policy and the value is explicitly coerced to the defined type. However, we
do not have a type for the return value as in [14] since our policy enforcement
is on API objects which are assumed to be safe. Instead, we propose more
fine-grained enforcement for the returned object as argued above, whereby
it is possible to specify a policy for a returned object in order to recursively
enforce full mediation.

3.5.2 Enforcement Method

Our enforcement method is implemented in a whitelist manner, i.e. only
methods and properties defined in the policy are accessible, the other are
absent from the enforced object. We provide an interface to enforce a policy
on an object. The key functionality of the interface is to traverse the policy
to get all the names of methods and properties together with the policy in
order to enforce the policy on the same name of the object. The methods and
properties of the object not defined in the policy are redefined as an empty
function or null value so that they are not accessible from untrusted code.
Listing 6 illustrates part of the implementation of the interface.

1 func t i on e n f o r c eWh i t e l i s t P o l i c i e s (object , p o l i c i e s) {
2 Object . keys (p o l i c i e s) . forEach (
3 func t i on (name) {
4 // i n sp e c t i f the element i s a method ,
5 // get the cor respond ing po l i c y and types
6 i f (method)
7 wrapMethod (object , name , po l i cy , types) ;
8 e l s e // property
9 wrapProperty (object , name , readPol icy , wr i t ePo l i cy , types) ;
10 }) ;
11 // i t e r a t e the ob j e c t to make the methods
12 //and p r op e r t i e s that are not de f ined in
13 // p o l i c i e s una c c e s s i b l e
14 . . .
15 re turn Object . f r e e z e (ob j e c t) ;
16 } ;

Listing 6: Policy enforcement

A method call policy and a property access policy are enforced slightly
different. We explain in detail the two enforcement mechanism as below.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 62/158

1 func t i on wrapMethod (object , method , po l i cy , types) {
2 / / . . f i nd func t i on f o r p o s s i b l e a l i a s e s
3 var o r i g i n a l = ob j e c t [method] ;
4 ob j e c t [method] = func t i on () {
5 var polArgs =//. . c l one arguments by the de f ined types
6 var proceed= func t i on (p o l i c i e s) {
7 var r e s u l t=//execute o r i g i n a l func
8 i f (! p o l i c i e s) re turn r e s u l t ;
9 re turn e n f o r c eWh i t e l i s t P o l i c i e s (r e su l t , p o l i c i e s) ;
10 }
11 re turn po l i c y (polArgs , proceed) ;
12 }
13 re turn ob j e c t [method] ;
14 }

Listing 7: Enforcing a method invocation

Enforcing method call policies We adapt our previous enforcement im-
plementation [14] to handle the enforcement for returned object. In summary,
the enforcement for a method invocation policy is a wrapper that keeps the
reference to the original method of the object to be wrapped, and redefines
the method by invoking a policy function which can control the execution of
the original method. As described, a policy is defined as a function with two
arguments: the first argument is the parameters of the invocation, the second
argument is the proceed function, representing the reference to the original
function; calling the proceed function will execute the original method. We
modify the proceed function (from [14]) to take one argument as a policy
for the returned object of the original method. If this policy is defined (from
the policy to be enforced), the returned object will be recursively enforced
by the provided policy. The simplified snippet of this interface is illustrated
in Listing 7.

Enforcing property access policies Our enforcement on property ac-
cess policies relies on the Object.defineProperty(..) method in ES5 to
enforce desired policies. We first get the current getter-setter functions of
the property of the object (using Object.getOwnPropertyDescriptor(..))
to be enforced. We then define a new descriptor with getter and setter func-
tions to execute read and write policy functions from the policy so that these
policy functions are always invoked whenever the property is accessed. De-
pending on runtime policy results from the read and write policy functions,
the original getter and setter functions may be called to run in the context
of the object. The returned value will be further enforced if there is a policy

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 63/158

1 func t i on wrapProperty (object , property , read , write , type) {
2 var desc = Object . getOwnPropertyDescriptor (object , property) ;
3 / / . . a s s e r t desc ob j e c t
4 var newdesc = {
5 get : f unc t i on () {
6 var readPo l i cy = read () ;
7 var va lue = desc . get . c a l l (ob j e c t) ;
8 i f (r eadPo l i cy===true) re turn value ;
9 i f (typeo f r eadPo l i cy===’object ’)
10 re turn e n f o r c eWh i t e l i s t P o l i c i e s (value , r eadPo l i cy) ;
11 } ,
12 s e t : f unc t i on (v) {
13 var c loneValue = coerceByType (type , v) ;
14 var wr i t ePo l i c y = wr i t e (c loneValue) ;
15 i f (typeo f c loneValue===’object ’)
16 c loneValue = combine (cloneValue , v) ;
17 i f (wr i t ePo l i c y===true)
18 re turn desc . s e t . c a l l (ob ject , [c loneValue]) ;
19 } ,
20 c on f i gu r ab l e : f a l s e ,
21 enumerable : t rue
22 }
23 Object . de f ineProper ty (object , property , newdesc) ;
24 } ;

Listing 8: Enforcing a property access with a policy

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 64/158

defined in read policy function. Listing 8 shows this enforcement mechanism.

3.6 Validation
To validate the feasibility and security of our two-tier architecture, we have
applied our prototype implementation in various application scenarios, in
which untrusted third-party JavaScript code get integrated (e.g. gadget in-
tegration in web mashups). In this section, we will report on one particular
case study, the integration of online advertisements. This case study captures
the representative characteristics of context-sensitive text advertisement ser-
vices such as AdBrite and Google Adsense.

The policy we want to enforce on the untrusted advertisement code is
the following. First, we want to restrict the untrusted code to only write to
a particular subset of the page (i.e. one particular div element, where the
ad will be displayed). Next, we want to restrict the DOM read access to
a particular subset of the page, so that only that part of the page is used
in the context-sensitive analysis of the untrusted code. Moreover, we want
to disable this reading access as soon as the user enters data into the page
(e.g. by filling in an input form). These are just simple policies but represent
application-specific and stateful policies. For example, we can define specific
elements that the ad can read or write, or define a security state to monitor
if the user enters the data.

To enforce these policies on context-sensitive advertisement scripts, we
first select the basic API of the outer sandbox to which the application-
specific policies and untrusted code will be confined. Next, we define fine-
grained, stateful policies to enforce on the untrusted code.

The baseline API enables in a coarse-grained and application-independent
way the set of features that are accessible within the outer sandbox (i.e. that
can be used by the application-specific policy as well as the untrusted code).
In our online advertisement validation experiment, we have chosen to only
provide a very limited API, namely access to DOM operations. The baseline
API is constructed via virtualization as briefly mentioned in Section 3.4.2.
The technique constructs mediator objects by creating virtual objects which
provide predefined methods and properties to mediate accesses to the DOM.

Next, we define the application-specific policy described informally above.
Similar to the baseline API, we construct mediator objects to mediate read
and write access to the DOM. The policy code also subscribes to the keyboard
events e.g. keydown to capture any user input. The mediator object for read
access grants access based on the requested DOM element and whether a
user input event was captured, write access is granted solely on the DOM
element specific to the ad. The policy allows the ad to set the style, width,

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 65/158

height of the ad area and also restricts the maximum value of width, height
so that the ad can not display an oversize area. Listing 9 illustrates some of
these policies.

1 var data_read = f a l s e ; // a s e c u r i t y s t a t e
2 var div_Main_policy = {
3 innerHTML : {
4 read : func t i on () {
5 i f (dataread)
6 re turn f a s l e ;
7 re turn true ;
8 } ,
9 / / . . . o ther d e f i n i t i o n s
10 } ;
11 var user_input = {
12 addEventListener : {
13 method : func t i on (args , proceed) {
14 var eventStr = args [0] ;
15 i f (eventStr===’keydown ’) {
16 dataread = true ;
17 re turn proceed () ;
18 }
19 } ,
20 args : [’ s t r i ng ’ , ’ funct ion ’ , ’ boolean ’]
21 } ,
22 / / . . . o ther d e f i n i t i o n s
23 } ;

Listing 9: Application-specific and stateful policy examples for untrusted ad

The context-sensitive advertisement script and the application-specific
policy are deployed in two separate code files, and loaded into the two sand-
box environments as described in Section 3.3. This case study has been
successfully tested on Mozilla Firefox 4.0.1 on a Windows 7 platform.

In addition, various security tests have been performed to assess the secu-
rity guarantees by our proposed architecture. Based on known attack vectors
and vulnerabilities in previous solutions (as described in e.g. [15, 16, 14]), we
assessed whether untrusted code could break out of the sandbox environment.

For reference, we have first executed the attack vectors in the hosting
page to ensure that the attacks are successful. We then have deployed the
attack vectors into a sandbox environment with an API without any enforce-
ment to ensure the API provides adequate functionalities and the attacks
are successful. Finally, we have deploy the malicious script into the sandbox
environment with an API enforced by above defined policies.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 66/158

We did not success to break out of our proposed two-tier security ar-
chitecture; the malicious script execution is prevented by two-tier sandbox
enforcement. This result was to be expected, since our two-tier architec-
ture relies on the same foundations and security guarantees of the Secure
ECMAScript library (SES) [3].

3.7 Related work
Solving security issues for untrusted JavaScript has recently received wide
attention both in industry and in the research community. However, most
of the recent work concern the context of current version of JavaScript (EC-
MAScript 3). Proxy [27] is a recent approach in ECMAScript 5 to construct
robust APIs. Although this approach does not allow to specify modular and
flexible policies, it can be used to construct a robust API as a baseline API
library for our approach, providing a complete framework for the DOM ac-
cess for untrusted code. To the best of our knowledge, our work is the first
study in enforcing fine-grained security policies for untrusted JavaScript in
ECMAScript 5. In [23], the authors have reviewed current security mech-
anisms for untrusted JavaScript in the literature. In this section, we only
review recent work related to fine-grained policy enforcement and sandbox-
ing mechanisms. We divide the related work based on whether it requires
browser modification.
Browser-level implementations Browser-level implementations have ac-
cess to the lower-level implementation of the JavaScript interpreter, and
therefore have the possibility to modify or extend the semantics of Java-
Script to provide greater security. However, this approach also has down side
from an immediate practical perspective. It requires the browser users to be
proactive to protect themselves. From a technical point of view, modifying
a browser requires much effort. Moreover, the implementation is likely to
change more frequently since the codebase of browsers e.g. Firefox normally
change rapidly.

JCShadow [18] is a recent work (and closest to our work) that also moti-
vates for fine-grained policy enforcement for untrusted JavaScript, and pro-
poses a reference monitor within a JavaScript engine to enforce policies. The
mechanism is implemented by modifying the JavaScript engine in Firefox
3.5.

ConScript [16] modifies Internet Explorer 8 to provide aspect-oriented
programming constructs for JavaScript in order to enforce fine-grained se-
curity policies. ConScript can enforce edit automata [10] policies which is
essentially the same class covered by our policies.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 67/158

Inspired by ConScript, WebJail [26] applies the deep aspect weaving tech-
nique to FireFox browser, and introduces a least-privilege composition policy
on top of this security architecture. This secure composition policy is based
on an analysis of security-sensitive operations in the upcoming HTML5 spec-
ification, and provides a whitelist-based approach to nine disjoint categories
of sensitive operations (such as external communication and client-side stor-
age).

There are also several other approaches such as [5, 7] using browser mod-
ification to enforce policies. However, these methods can only enforce coarse-
grained access control policies which are not applicable to untrusted script
scenarios.

On the other hand, approaches to enforcing security policies without mod-
ifying browser have advantage in themselves. The enforcement can be pro-
vided as a library by a server or a proxy and the policies are enforced at
runtime at the browser. One branch in this area is to modify the original
program or restrict untrusted code in a safe subset while the other deploys
non-invasive approach to original code.
Code transformation and safe subsets BrowserShield [22], Caja [17],
and Facebook JavaScript [4] are examples of the approaches using code mod-
ification or filtering. BrowserShield [22] is an approach using code transfor-
mation dynamically to enforce security policies. The idea of BrowserShield
is further developed at Microsoft Live Labs as a Web Sandbox framework
[9] which rewrites untrusted JavaScript to run it inside an isolated virtual
machine which mediates access to the real JavaScript environment.

Google Caja [17] is another approach to enforcing policies of a web page
on the client side. Caja defines a safe JavaScript subset based on object-
capability model. Untrusted JavaScript code is transformed into a safe ver-
sion with isolated modules by a rewriting process. The transformed code
is provided APIs by libraries such as Domita to have indirect access to the
DOM. However, Caja does not support fine-grained policies enforcement as
we investigate in this work.

Similar to Caja, Facebook JavaScript (FBJS) [4] is an another indus-
trial approach to sandboxing untrusted JavaScript application embedded into
Facebook. Untrusted code written in FBJS is also transformed in a separate
namespace so that it is isolated to the other.

Maffeis et al proposed another approach [11] for untrusted JavaScript
which uses filtering, rewriting, and wrapping to isolate the untrusted code.
Although these mechanisms have proved the soundness by semantics or au-
tomated tools [12, 24], they limit untrusted code into a subset of JavaScript
and do not allow developers to specify application-specific and fine-grained

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 68/158

policies as we investigate in this work.
ADsafe [2] is another safe subset of JavaScript to allow untrusted adver-

tisements executing on a trusted hosting page. The safe subset is an interface
that mediates access to the DOM and other global variables to ensure that
the untrusted code cannot perform malicious behaviors. Before placing an
untrusted ad code into a hosting page, the ad code must be validated by
an static analysis tool called JSLint to ensure that the untrusted code only
has access to the interface provided by the ADsafe library. The soundness
of API confinement of ADsafe has been shown in [21, 24]. Although this
mechanism do not allow to define fine-grained policies, the ADsafe subset
could be provided as a baseline API in our architecture so that the untrusted
code can be loaded and executed dynamically without code validation by an
off-line tool.
Non-invasive approaches Non-invasive approach to enforcing security
policies is exemplified by the lightweight self-protecting JavaScript method
[20]. This method defines a wrapper library in aspect-oriented program-
ming [8] style to intercept built-in functions with a security policy. The
library is placed at the header of a page so that it can execute first to wrap
sensitive function calls and property accesses, and therefore to make the
web page self-protecting. The implementation of this method faces several
challenges which have been addressed in a later work [14]. However, the im-
plementations in [20, 14] focus on enforcing policies on built-in objects which
is at page-level while our architecture is to enforce policies on API objects
for untrusted code. In our work, we revisit the implementation in the con-
text of ECMAScript 5, and adapt and revise the implementation by the new
advantage features of ES5.

ObjectViews [15] is a similar approach to our work which provides wrap-
pers as a library in JavaScript to share objects among principals in the
browser. In untrusted code context, ObjectViews [15] focuses on safe sharing
of objects (in ES3) between privileged code and untrusted code. However did
not discuss how to load and execute untrusted code as we investigate in this
paper.

Similar to our case study of context-sensitive advertisement application,
AdJail [25] is an approach to isolating an ad script into a hidden iframe
(shadow page) which is enforced by the same-origin policy. The ad script
interact with the hosting page through tunnel scripts in both frames which
can enforce to confidentiality and integrity policies. However, the framework
only supports limited coarse-grained access control policies.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 69/158

3.8 Discussion and future work
Our two-tier sandbox architecture is built on the specification of ECMAScript
5 and its “strict mode” to provide modular and fine-grained security policies
for untrusted JavaScript code. The implementation of the architecture is
based on an existing technique [20], and a library [3], however, improving
on both of these. In particular, the two-tier sandbox architecture allows
application-specific and fine-grained security policies be defined and enforced
modularly, which is lacking in [3], and allow the enforcement on untrusted
code, which is missing in [20]. Moreover, the policy enforcement mechanism
is also executed within a sandbox so that the policy code cannot expose
unprotected resources. This improves on both [3] and [20] by providing a
fail-safe for badly written policies without need for complex policy language
development. To the best of our knowledge, our security architecture is the
first study in enforcing fine-grained security policies for untrusted JavaScript
in ECMAScript 59. In summary, the architecture is unique in the sense that
it enforces application-specific and stateful fine-grained security policies for
untrusted JavaScript code without browser modification or pre-processing
of the code. In addition, the baseline API in the outer sandbox ensures a
failsafe fallback in case of badly written policies.

Not all third-party code available in the wild supports yet the strict mode
of ECMAScript 5, but we believe that this will be shifting quite rapidly.
As ECMAScript 5 becomes available in all major browsers, and multiple
content providers (such as Google and Yahoo) already favor the strict mode.
Moreover, the API of the SES sandbox library is currently under proposal
by the ECMA committee (TC 39) to be included as built-in features in a
future version of ECMAScript [24], our work demonstrates the use of SES
and provides a step towards a mechanism for executing untrusted code with
application-specific and fine-grained security policy enforcement.

In future work we will further contribute to a robust baseline API, and
we plan to validate our two-tier sandbox architecture on a broader range of
real-life applications, by automatically injecting the client-side architecture
for existing untrusted third-party code.

9IceShield [6] is a very recent ECMAScript 5 library inlined to a page to detect and
prevent malicious behaviour of the page. However, similar to our lightweight self-protecting
JavaScript approach, this library does not separate between trusted and untrusted code

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 70/158

References
[1] Dasient Blog. Q1’10 web-based malware data and trends. http://blog.

dasient.com/2010/05/. May 10, 2010.

[2] Douglas Crockford. ADsafe – making JavaScript safe for advertising.
http://adsafe.org/.

[3] Mark S. Miller et al. Secure EcmaScript 5. http://code.google.com/
p/es-lab/wiki/SecureEcmaScript. Accessed in September 2011.

[4] Facebook. Facebook JavaScript. http://developers.facebook.com/
docs/fbjs.

[5] Oystein Hallaraker and Giovanni Vigna. Detecting Malicious JavaScript
Code in Mozilla. In ICECCS ’05: Proceedings of the 10th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages
85–94, Washington, DC, USA, 2005. IEEE Computer Society.

[6] Mario Heiderich, Tilman Frosch, and Thorsten Holz. IceShield: De-
tection and Mitigation of Malicious Websites with a Frozen DOM. In
Proceedings of the International Symposium on Recent Advances in In-
trusion Detection, RAID’11, 2011.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injec-
tion attacks with browser-enforced embedded policies. In WWW ’07:
Proceedings of the 16th international conference on World Wide Web,
pages 601–610, New York, NY, USA, 2007. ACM.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In ECOOP, pages 220–242, 1997.

[9] Microsoft Live Labs. Web Sandbox. http://www.websandbox.org/.
Accessed in May 2011.

[10] Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata: Enforce-
ment Mechanisms for Run-time Security Policies. International Journal
of Information Security, 4(1-2):2–16, 2005.

[11] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating JavaScript
with Filters, Rewriting, and Wrappers. In ESORICS, pages 505–522,
2009.

FP7-ICT-2009-5
Project No. 256964

http://blog.dasient.com/2010/05/
http://blog.dasient.com/2010/05/
http://adsafe.org/
http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://developers.facebook.com/docs/fbjs
http://developers.facebook.com/docs/fbjs
http://www.websandbox.org/

D4.3: Secure Composition Policies and Server-driven Enforcement 71/158

[12] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object Capabilities
and Isolation of Untrusted Web Applications. In Proc of IEEE Security
and Privacy’10. IEEE, 2010.

[13] Sergio Maffeis and Ankur Taly. Language-Based Isolation of Untrusted
JavaScript. In CSF ’09: Proceedings of the 2009 22nd IEEE Computer
Security Foundations Symposium, pages 77–91, Washington, DC, USA,
2009. IEEE Computer Society.

[14] Jonas Magazinius, Phu H. Phung, and David Sands. Safe Wrappers
and Sane Policies for Self Protecting JavaScript. In T. Aura, K. Jarvi-
nen, and K. Nyberg (Eds.): The 15th Nordic Conference in Secure IT
Systems (NordSec 2010), LNCS 7127, pages 239–255. Springer-Verlag,
2012. (Selected papers from OWASP AppSec Research 2010, June 2010,
Stockholm, Sweden).

[15] Leo Meyerovich, Adrienne Porter Felt, and Mark Miller. Object Views:
FineGrained Sharing in Browsers. In WWW2010: Proceedings of the
16th international conference on World Wide Web, New York, NY, USA,
2010. ACM.

[16] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying and En-
forcing Fine-Grained Security Policies for JavaScript in the Browser.
In SP ’10: Proceedings of the 2010 IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2010.

[17] Mark S. Miller, Mike Samuel, Ben Laurie, and Ihab Awad Mike
Stay. Caja: Safe active content in sanitized JavaScript. http://
google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf.

[18] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and Xuxian Jiang.
Towards Fine-Grained Access Control in JavaScript Contexts. In Pro-
ceedings of the 31st IEEE International Conference on Distributed Com-
puting Systems (ICDCS). IEEE, 2011.

[19] Phu H. Phung and Lieven Desmet. A two-tier sandbox architecture
for untrusted javascript. In Proceedings of the Workshop on JavaScript
Tools (JSTools '12), pages 1–10. ACM, June 2012.

[20] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight Self-
Protecting JavaScript. In ASIACCS ’09: Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications
Security, pages 47–60, Sydney, Australia, 10 - 12 March 2009. ACM.

FP7-ICT-2009-5
Project No. 256964

http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf

D4.3: Secure Composition Policies and Server-driven Enforcement 72/158

[21] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shri-
ram Krishnamurthi. ADsafety: Type-Based Verification of JavaScript
Sandboxing. In 20th USENIX Security Symposium, 2011.

[22] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and
Saher Esmeir. BrowserShield: Vulnerability-driven filtering of dynamic
HTML. ACM Trans. Web, 1(3):11, 2007.

[23] Philippe De Ryck, Maarten Decat, Lieven Desmet, Frank Piessens, and
Wouter Joosen. Security of Web Mashups: a Survey. In T. Aura, K.
Jarvinen, and K. Nyberg (Eds.): Information Security Technology for
Applications, The 15th Nordic Conference in Secure IT Systems (Nord-
Sec 2010), LNCS 7127, pages 223–238. Springer-Verlag, 2012.

[24] Ankur Taly, John C. Mitchell, Ulfar Erlingsson, Jasvir Nagra, and
Mark S. Miller. Automated analysis of security-critical javascript apis.
In Proc of IEEE Security and Privacy’11. IEEE, 2011.

[25] Mike Ter Louw, Karthik Thotta Ganesh, and V.N. Venkatakrishnan.
AdJail: Practical Enforcement of Confidentiality and Integrity Policies
on Web Advertisements. In 19th USENIX Security Symposium, 2010.

[26] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens,
and Wouter Joosen. Webjail: Least-privilege integration of third-party
components in web mashups. In ACSAC, December 2011.

[27] Tom Van Cutsem and Mark S. Miller. Proxies: design principles for
robust object-oriented intercession APIs. In Proceedings of the 6th sym-
posium on Dynamic languages, DLS ’10, pages 59–72, New York, NY,
USA, 2010. ACM.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 73/158

4 JSand: Complete Client-Side Sandboxing
of Third-Party JavaScript without Browser
Modifications1011

4.1 Introduction
In the last decade, the web platform has become the number one platform
on the Internet. There is a clear paradigm shift from desktop applications
and proprietary client-server solutions towards web-enabled services. An
important catalyst for this paradigm shift has been the power of JavaScript
as well as the advent of HTML5, giving web developers the tools to build
rich and interactive websites.

As a consequence of this enormous growth in popularity, the web has
also become the primary attack platform: SANS [31] reported in 2009 that
more than 60% of all cyber attacks are aimed at web applications, and more
than 80% of discovered vulnerabilities are web-related. A whole range of web
attacks exists in the wild, ranging from Cross-Site Scripting, Cross-Site Re-
quest Forgery and SQL injection to the exploitation of broken authorization
and session management. This paper focuses on one particular and impor-
tant class of web attacks, namely attacks due to the insecure integration of
JavaScript.

To enrich the functionality and interactivity of a website, a common
and wide-spread approach is to integrate JavaScript from third-party script
providers. Recent studies [41, 24] have shown that 96.9% of websites include
scripts from external sources, and on average each website includes scripts
from 3.1 external sources. For example, websites integrate among others
JavaScript-enabled advertisements (such as Google AdSense and adBrite),
Web analytics frameworks (such as Google Analytics, Yahoo! Web Analyt-
ics and Tynt), web widgets and buttons (such as Google Maps, addToAny
button and Google +1 button), and JavaScript programming libraries (such
as jQuery and Dojo).

10This paper has been published as [1]: Pieter Agten, Steven Van Acker, Yoran Brond-
sema, Phu H. Phung, Lieven Desmet, Frank Piessens, JSand: Complete client-side sand-
boxing of third-party JavaScript without browser modifications, Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC 2012), pages 1-10, Orlando,
Florida, USA, 3-7 December 2012

11This research is partially funded by the Research Fund KU Leuven, the EU-funded
FP7 projects NESSoS and WebSand and by the IWT-SBO project SPION. Pieter Agten
holds a Ph.D. fellowship of the Research Foundation - Flanders (FWO). With the financial
support from the Prevention of and Fight against Crime Programme of the European
Union European Commission - Directorate-General Home Affairs.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 74/158

The de facto browser security model today is defined by the Same-Origin
Policy (SOP). The SOP restricts access of client-side scripts to resources
belonging to the same origin12. For instance, the SOP ensures that docu-
ment data and cookies from one origin cannot be read by scripts belonging
to another origin. However, the SOP includes some important relaxations
with respect to navigation and content inclusion (e.g. embedded images and
scripts) [42]. In particular, if a page from one origin includes a script from
another origin, the included script is treated as if it belongs to the including
origin, and hence it inherits all the capabilities and permissions of the hosting
page. This makes malicious script inclusion a very powerful attack vector.

Several countermeasures have been proposed to limit the capabilities of
third-party JavaScript, including (1) the introduction of safe subsets of Java-
Script [34, 4, 16], (2) client-side reference monitors [18, 35], and (3) server-side
transformations of the script to be included [21, 33]. However, all of these
have at least one of the following limitations.

First, some approaches [18, 35] require intrusive browser modifications,
in particular to the JavaScript engine and the binding between browser and
JavaScript engine. Such modifications hinder short-term deployment of the
countermeasure.

Second, some approaches do not support client-side script inclusion: in
order to perform server-side pre-processing (e.g. source-to-source translation
or filtering) of the scripts, the scripts have to pass through the web server [21,
34, 4]. This effectively changes the architectural model of client-side script
inclusion to server-side script inclusion.

Third, some approaches do not provide complete mediation between dif-
ferent scripts on the same page, or to all resources exposed in the browser.
Self-Protecting JavaScript (SPJS) [27, 17] assumes that all scripts included
on a hosting page need identical security constraints. It does not differentiate
between different external scripts nor between local and remote inclusions.
AdJail [33] successfully isolates untrusted advertisements from the Document
Object Model (DOM) of the hosting page, but since it uses iframes as iso-
lation units, it cannot fully protect security-sensitive APIs such as XHR,
Geolocation and local storage.

Inspired by recent advances in achieving object-capability guarantees for
JavaScript [21, 15, 22, 26, 9], this paper presents JSand, a novel security
architecture to securely integrate third-party JavaScript. We improve upon
the state-of-the-art with the following contributions:

1. JSand is the first JavaScript sandbox that (1) does not need browser
12An origin is a (protocol, domain name, port) tuple.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 75/158

modifications, (2) supports client-side script inclusion and (3) com-
pletely mediates different scripts and the browser APIs.

2. We show evidence that JSand is secure, compatible with complex and
widely used scripts (such as Google Maps, Google Analytics and jQuery)
and performs sufficiently well.

The rest of this paper is structured as follows. Section 4.2 introduces the
necessary background and defines the problem statement. In Section 4.3,
the JSand architecture is presented, and Section 4.4 discusses several relevant
implementation aspects. Section 4.5 evaluates the security, compatibility and
performance of JSand. Finally, Section 4.6 discusses related work, and we
conclude in Section 4.7.

4.2 Problem statement
4.2.1 Integrating third-party JavaScript

To enrich the functionality and interactivity of a website, a common and
wide-spread approach is to integrate JavaScript from third-party script providers.
The two most wide-spread techniques to integrate third-party JavaScript in
web pages are through script inclusion and via iframe integration [7].

Script inclusion HTML script tags are used to execute JavaScript as part
of a web page. If the JavaScript code is integrated from an external
source, the browser will still execute the code within the security con-
text of the web page, without any restrictions of the SOP.

Iframe integration HTML iframe tags allow a web developer to include
one document inside another. The advantage of iframe integration is
that the integrated document is loaded in its own security context:
integrated content from another origin is isolated from the integrating
web page by the SOP.

Script inclusion is the de facto script integration technique on the web,
both for local scripts as well as for external scripts. The iframe integration
technique is used for web gadgets that don’t have strong integration needs
with the embedding web page, or have an out-of-band service-to-service com-
munication channel (such as the Facebook Like button or Facebook Apps).
In the remainder of this paper, we focus on third-party JavaScript integration
through script inclusion.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 76/158

4.2.2 Malicious script inclusion

The browser security model for integrating third-party JavaScript is prob-
lematic. Once included in a website, a malicious script cannot only access
all the document data and cookies, but with the advent of HTML5, the
malicious script has also access to local storage data (e.g. Web Storage, In-
dexedDB), intra-window communication (Web Messaging), remote resource
fetching via XHR and user-consented privileges (such as Geolocation, media
capture, access to System Information API, and many more). This makes
malicious script inclusion a very powerful attack vector. One can distinguish
between two types of attackers.

Malicious script provider The script provider has malicious intentions
(but covers up by providing appealing functionality to potential cus-
tomers), or becomes malicious over time (e.g. intentionally, or by selling
out or quitting his business [24]).

Benign script provider under attack The script provider has no mali-
cious intentions, but the scripts delivered to its clients become under
control of an attacker. This can be due to the inclusion of other un-
trusted resources (e.g. in advertisement networks), due to a bug in
the delivered script (e.g. a DOM-based XSS vulnerability [13]), due
to a server-side take-over (e.g. via SQL injection) or due to in-transit
tampering with the scripts by a network attacker.

In both cases, the attacker controls the scripts included by the hosting
page, and by default gains full access to the execution environment of the
web page.

4.2.3 Requirements

Given the wide spread of script inclusion and the increasing impact of mali-
cious script inclusion, there is a clear need for a novel security architecture to
securely integrate third-party JavaScript, but without introducing
disruptive changes. Preserving backwards compatibility is crucial in the
web context. We therefore identify the following requirements:

R1 Complete mediation All access to security-sensitive functionality should
be completely mediated by the security mechanism. This includes ac-
cess to the DOM, as well as security-sensitive JavaScript APIs (such
as Geolocation and local storage). The attacker must be unable to
circumvent the security mechanisms in place.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 77/158

JS1

script provider 1

script provider 2

JS2
JSand

policy1

policy2

website

JS

browser

JS
an

d

DOM

JS2

policy2

JS1

policy1

JS

Figure 6: the JSand architecture. Inside the browser, all access from JSand
sandboxes to the JavaScript environment is mediated according to server-
supplied policies.

R2 Backwards compatible The security mechanism should seamlessly op-
erate in the current web ecosystem, i.e. it should not rely on browser
modifications or disable the direct delivery of scripts from the script
provider to the browser. In addition, the security mechanism should
support the integration of legacy scripts.

R3 Performance The security mechanism should introduce only a minimal
performance penalty, unnoticeable to the end-user.

4.3 JSand security architecture
The JSand architecture enables the owner of a website to securely integrate
third-party scripts, without needing disruptive changes to either server-side
or client-side infrastructure. We first give a high-level overview of the archi-
tecture and then discuss the architectural choices under the hood.

4.3.1 Architectural overview

Figure 6 depicts the JSand architecture. A website owner deploys JSand by
including the JSand JavaScript library in his webpages. When one of these

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 78/158

pages is loaded in a visitor’s browser, the third-party scripts to be sandboxed
are fetched directly from the servers of the script provider. The JSand library
confines each script to its own secure sandbox, which isolates the script from
other scripts and from the DOM.

4.3.2 Under the hood

The JSand architecture is based upon the secure confinement of third-party
JavaScript. JSand realizes this through the use of an object-capability en-
vironment. Such environment provides an appropriate device for isolating
untrusted JavaScript: without an explicit and unforgeable reference to a
security-sensitive resource (i.e. an object or a function), a script is unable
to access the resource or make use of its capabilities. The object-capability
model is at the basis of Caja [21], and many other safe subsets of Java-
Script [15].

The JSand library invokes third-party scripts, initially giving them only a
minimal set of unforgeable references. To maintain control over all references
acquired by a sandboxed script, JSand applies the Membrane pattern pro-
posed by Miller [23]. Our implementation of this pattern consists of placing
policy-enforcing wrappers around objects that provide potentially security-
sensitive operations. Whenever one of these objects returns a reference to
another object, the membrane is extended to cover that object as well. This
ensures a sandboxed script never has direct access to a security-sensitive
operation.

The membrane’s wrappers intercept all operations performed on the ob-
jects they wrap and hence implement the security policy enforcement points.
On each enforcement point, the wrapper consults the security policy to de-
termine whether or not the corresponding operation is permitted. If not, this
will be indicated by the security policy and the operation will be blocked.
The architecture is not bound to any specific type of security policy, which
gives website owners the freedom to enforce arbitrarily complex policies.

Since all interactions between a script and the browser are performed by
calling DOMmethods, it suffices to place a wrapper around each DOM object
in order to enforce a policy on all security-sensitive operations. These include
not only operations to read or modify content of the hosting page, but also
to communicate with other scripts and to use browser-provided JavaScript
APIs.

In conclusion, the JSand architecture provides an end-to-end solution for
securely integrating third-party JavaScript scripts on a website. The website
owner is able to define and enforce security policies on scripts, which puts
him back into the driver’s seat. JSand does not require disruptive changes to

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 79/158

the architecture of the web: it does not break direct script delivery towards
the browser, and can be deployed without additional server-side or client-
side infrastructure. The combination of the object-capability model and the
Membrane pattern ensures that all access from a sandboxed script to security-
sensitive operations passes through a membrane’s wrappers, which enforce
the security policy.

4.4 Prototype implementation
This section reports on the development of a mature JSand prototype, which
is designed to work in ECMAScript 5 (ES5) compatible browsers with sup-
port for the proxy features of the upcoming ES Harmony standard. The
current prototype runs seamlessly in Google Chrome v20.0.1132.21.

In Subsections 4.4.1 and 4.4.2, we present the client-side technology for
executing third-party JavaScript in a confined sandbox. Subsection 4.4.3 de-
scribes the type of security policies that are enforced. Next, Subsection 4.4.4
illustrates how access to security-sensitive operations is completely mediated.
Subsection 4.4.5 discusses how our prototype deals with dynamic script load-
ing and Subsection 4.4.6 describes a set of automatic script transformations
to improve compatibility with legacy scripts.

4.4.1 Object-capability system

As described in Section 4.3.2, the JSand architecture relies on an object-
capability environment to provide complete mediation. The ECMAScript
language does not qualify as an object-capability language by itself. For
instance, any script has access to all global variables by default, and conse-
quently has capabilities that are not under control of any security framework.
However, in 2008, Miller et al. [21] identified a subset of ES3 which forms
a true object-capability language. More recently, the Google Caja team has
identified a subset of ES5 strict, named Secure ECMAScript (SES), that also
provides such an object-capability language. Moreover, they have developed
a JavaScript library that enables the execution of SES on ES5-compatible
browsers [22]. This library provides methods for safely evaluating SES-
compliant code in an isolated environment. A key feature of the library
is that it can execute completely at the client side and hence doesn’t rely on
any custom server-side architecture. JSand uses the SES library to realize
its underlying object-capability environment.

However, since SES is a subset of ES5 strict, which in turn is a subset
of ES5 non-strict, not all currently deployed JavaScript scripts are SES-
compliant. Furthermore, the language supported by the SES library differs

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 80/158

from true SES in several minor ways, further reducing compatibility with
legacy scripts. Two important incompatibilities between ES5 and the SES-
like language supported by the SES library are described below.

Global variables In ES5, the global window object can have arbitrary prop-
erties and for each of these properties there is a corresponding global
variable with the same name. Conversely, for any global variable, a
corresponding property with the same name is defined on the global
object. In SES, this is no longer the case: global variables are not
aliased by properties on the global object or vice versa.

Strict mode SES enforces strict mode for all scripts. Hence, ES5 non-
strict code might be incompatible with SES. For instance, strict mode
drops support for the with keyword, prevents the introduction of new
variables into the outer scope by an eval and no longer binds this to
the global object in a function call.

SES was designed to support (only) recognized ES5 best practices. There-
fore, scripts that adhere to these best practice standards are SES-compliant
and hence we expect the number of fully SES-compliant scripts to increase
progressively as these best practices become more widespread. Although not
all legacy scripts run without errors under the SES library, the secure con-
finement of these scripts is never at stake. Nevertheless, we have developed
a support layer to improve compatibility with legacy scripts. This layer is
described in detail in Section 4.4.6.

To enforce the object-capability model and to provide support for legacy
scripts, the SES library and the support layer need access to the source
code of scripts to be sandboxed. Our prototype fetches this code using the
XMLHttpRequest (XHR) API. By default, this API is subject to the SOP,
but recently added web features have facilitated cross-domain interactions,
namely Cross-Origin Resource Sharing (CORS) [38] and the Uniform Mes-
saging Policy (UMP) [39]. In case CORS or UMP are not supported by
the script provider, our solution can fall back to a server-side JavaScript
proxy [40].

4.4.2 Policy-enforcing membranes

The Proxy API To implement the Membrane pattern in an efficient and
transparent way, our prototype uses the Harmony Proxy API, which is sched-
uled to be standardized in the next version of ECMAScript [36]. This API
enables us to create wrappers that generically intercept all property accesses
and assignments on specific objects, as shown in the code below.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 81/158

1 func t i on wrap (target , p o l i c y) {
2 var handler = {
3 get : f unc t i on (proxy , propertyName) {
4 i f (p o l i c y . isGetAllowed (propertyName)) {
5 re turn ta r g e t [name] ;
6 }
7 re turn nu l l ;
8 }
9 s e t : f unc t i on (proxy , propertyName , va lue) {
10 i f (p o l i c y . i sSetAl lowed (propertyName)) {
11 ta r g e t [name] = value ;
12 re turn true ;
13 }
14 re turn f a l s e ;
15 }
16 }
17 return Proxy . c r e a t e (handler , Object . getPrototypeOf (t a r g e t)) ;
18 }

The wrap function creates a simple policy-enforcing wrapper around a spe-
cific target object. All property accesses and assignments on this wrapper
are intercepted by the get and set traps of the handler object, which uses
the policy object to determine whether or not the access or assignment is
allowed.

Membrane implementation To implement the Membrane pattern, the
handlers used in JSand transitively wrap all objects they return from the
get trap and unwrap the objects they receive in the set trap. The entire
prototype chain of a wrapper must be wrapped as well, to prevent an attacker
from piercing the membrane by accessing an unwrapped prototype.

If an object to be returned from the get trap is a function, a function
proxy that wraps the original function is returned. This function proxy first
unwraps all its arguments, then calls the original function using these un-
wrapped arguments and finally wraps the return value before returning it
to the caller, thereby further expanding the metaphorical membrane. Some
methods, such as window.addEventListener, take a callback function as an
argument; like all other arguments, this callback must be wrapped appro-
priately to uphold the membrane. Because a callback function is executed
in the context of a sandbox, its wrapper must wrap each of its arguments
and must unwrap the return value after calling the original function with the
wrapped arguments.

Each sandbox keeps a mapping from its wrappers to the target objects
they wrap and vice versa. This makes it possible to unwrap previously

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 82/158

wrapped objects and to ensure that there is at most one wrapper (per sand-
box) corresponding to each target object, making the membrane identity-
preserving [5]. The mapping from wrappers to their corresponding targets
is only accessible from outside the sandbox, for otherwise an attacker could
use it to escape from the sandboxed environment.

Whereas sandboxed code should always be confined to the bounds of its
own sandbox, many use cases require an operation to introduce code from
outside a sandbox into an existing sandbox. Such operations enable a web-
site owner to extend or interact with a sandboxed script. JSand sandboxes
provide two functions for introducing new code into them: innerEval(code)
and innerLoadScript(url). The first function evaluates a literal code
string, while the second loads a script at a given URL.

In conclusion, the Membrane pattern transparently isolates a sandbox
from code running outside of it or in other sandboxes. Since the handlers
intercept each property access and assignment made on a wrapper, they
contain the enforcement points which consult the security policy to determine
whether or not an operation is permitted.

4.4.3 Security policies

Defining good security policies is important for ensuring the secure confine-
ment of sandboxed scripts. To avoid needing a known-good version of a script
to be sandboxed, a policy should be based on the claimed functionality of
a script, as opposed to being based on actions performed by any specific
version of the script. Generic templates can be provided to support website
owners in defining good security policies.

Since the JSand architecture is independent of the specific type of secu-
rity policy to enforce, policies can range from simple stateless policies, to
arbitrarily complex policies. In both cases, the security policy can be spec-
ified as a JavaScript function that takes information about the operation to
be performed as input and returns a boolean indicating whether or not the
operation is allowed. We discuss three types of policies in more detail below.

Stateless policies Stateless policies determine whether or not an opera-
tion is permitted based on information associated with that operation alone.
For instance, a stateless security policy could specify that a specific function
call performed on a specific object is only allowed when the value of the first
argument is on a predefined whitelist.

WebJail [35] is an example of such a stateless policy for securely integrat-
ing third-party JavaScript. It classifies security-sensitive operations into nine
categories, including DOM access, cookies, external communication, device

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 83/158

access, etc., which can be permitted or blocked individually. A WebJail pol-
icy is based on a static whitelist of each of these categories, and could easily
be implemented with JSand.

Stateful policies Stateful policies can accumulate internal security state
over multiple calls and use this global state as part of the policy, in addition to
the local information made available on each operation request. For instance,
a stateful security policy could specify that the use of XHR is allowed as long
as no cookies have been read. This type of policy is more expressive than its
stateless counterpart, but it is also more complex to specify and more prone
to mistakes.

The shadow page in AdJail [33] is another example of internal state that
could be accumulated over multiple calls. This page represents a ghost DOM,
which is not directly rendered to the user, but allows an advertisement to
execute various DOM operations in a confined environment.

Advanced policies More complex policies can be used to enforce more
advanced security properties, such as information flow security. One example
of this is a set of policies to implement noninterference through secure multi-
execution (SME) [8, 6]. For any script, SME can classify each input and each
output channel as either H (high security, confidential) or L (low security,
public). A script is noninterferent if its low-level outputs are not influenced
by high-level inputs. Consider for instance the following script on a webserver
at mydomain.com.

1 var cook i e s = document . cook i e ;
2 document . getElementById (’ some−img ’) . s r c =

’ http :// a t tacke r . com/img . jpg ? c=’ + escape (cook i e s) ;

The first line can be classified as H input, since cookie values are security
sensitive. The second line can be classified as L output, since this triggers an
HTTP request to a different domain. This program is interferent, because
the low-level output statement at line 2 is clearly influenced by the high-level
input statement at line 1.

Under secure multi-execution, a script is run multiple times, once for
each security level. Outputs of a given security level are only generated in
the execution belonging to that security level and inputs of a given security
level are replaced by undefined in all executions of a lower level. Hence,
high-level, security-sensitive input can never leak to low-level, public output
channels, or even have an influence on them.

To multi-execute a script using JSand, that script must be executed once
for the low security level and once for the high security level, each time in a

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 84/158

different sandbox, with a different security policy. The low-level policy should
disable all high-level inputs and ignore high-level outputs, while the high-level
policy should simply ignore low-level outputs. Since each output statement is
executed in only one of the executions, the net effect of a noninterferent script
under secure multi-execution will be the same as the net effect of executing
the same script without multi-execution.

4.4.4 Wrapping the DOM

All interactions between a script and the browser are performed through the
DOM. Hence, to control access to all security-sensitive operations, JSand
needs to control access to all facets of the DOM. To implement this, each
sandboxed script is initially only given a single reference to a wrapper of
the window object, which is the root of the DOM tree. As described in Sec-
tion 4.4.2, all property accesses, property assignments and function calls on
this wrapper or on any object transitively reached from it are intercepted by
a handler. These handlers can thus enforce an arbitrary policy on the entire
DOM, and hence effectively control access to all security-sensitive operations.

For any DOM object wrapper, a distinction can be made between two
categories of properties. The first category consists of standard DOM proper-
ties, i.e. properties that are part of the DOM as defined by the ECMAScript
standard (or implementation-specific properties provided by the browser).
The second category consists of custom properties that have been added to a
DOM object wrapper by a sandboxed script. For instance, window.document
belongs to the first category, while window.googlemaps could belong to the
second. Properties from these two categories need to be handled differently.
Assignments to standard DOM properties should be propagated outside the
sandbox to the corresponding target property on the real DOM object (if
allowed by the security policy), since this is the only way a sandboxed script
can interact with the browser. Custom properties should however be confined
to the bounds of the sandbox, to prevent sandboxed code from polluting the
global namespace and from reading or modifying properties defined outside
the sandbox.

To make the distinction between standard DOM properties and custom
properties, JSand uses a statically defined DOM description, derived from
the W3C DOM specification [37]. This description consists of an array of
property descriptors, indexed by a DOM object name (e.g. Window) and a
property name (e.g. alert). Since each descriptor corresponds to a standard
DOM property, they enable the handlers to determine whether or not a given
property is a standard DOM property

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 85/158

4.4.5 Dynamic script loading support

From experience, we have learned that many scripts dynamically load ad-
ditional scripts during their execution. This is typically accomplished by
inserting a new script tag with a src attribute in the document, because this
method is not under restriction of the same origin policy. However, when a
script is included this way, it is executed in the global context. Hence, if we
would allow sandboxed scripts to simply add new script tags to the docu-
ment, they could trivially break out of their sandbox. Any script included
by a sandboxed script should execute within that same sandbox.

For this reason, JSand uses special handlers to intercept methods that
allow script tags to be added to the document, including node.appendChild,
node.insertBefore, node.replaceChild, node.insertAfter and document.write.
The first four of these take a (partial) DOM tree as argument and append
or insert it at a certain place in the DOM. Our handlers for these methods
search the given DOM tree for script tags, extract the value of the src at-
tribute and execute the corresponding scripts in the sandbox that included
them, using the innerLoadScript function described in Section 4.4.2. The
document.write method is similar but takes an HTML string as argument
and appends that string verbatim to the document. The handler for this
method parses the given HTML string, extracts script tags out of it and
loads them as described above.

We have considered two different techniques for parsing a given HTML
string in JavaScript. The first technique consists of creating an iframe and
setting its srcdoc attribute [2] to the given HTML. To prevent the iframe
from fetching and executing scripts included in the HTML, its sandbox at-
tribute [2] must be set as well. The second technique consists of using a pure
JavaScript library to parse the HTML [12]. The iframe-based technique has a
potential performance benefit, since the parsing is done by native code in the
browser instead of in JavaScript. Moreover, using the first technique ensures
that the HTML is parsed exactly as the browser will interpret it. However,
one of the problems of this approach, is that the parsing is performed asyn-
chronously. That is, we can only access the iframe’s fully populated DOM
tree from its onload callback, which is triggered some time after setting the
srcdoc attribute. Consequently, scripts that immediately make use of the
HTML written by document.write could fail, since the HTML might not yet
have been processed. Performing a continuation-passing style transformation
on these scripts could solve this problem, but this is a complex transformation
which we leave for future work. Our prototype uses the second technique,
since it does not suffer from this problem.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 86/158

4.4.6 Support for legacy scripts

Although the SES library natively supports scripts adhering to recognized
ES5 best practices, as described in Section 4.4.1 not all currently deployed
JavaScript scripts do so. Although the secure confinement of legacy scripts
is never at stake, not all of them run without errors under the SES library.
Therefore, we have developed a support layer to further improve the compat-
ibility with these legacy scripts, based on three abstract syntax tree (AST)
transformations.

T1 Adding a property to the global window object normally introduces that
property as a global variable, but this does not hold in a SES environ-
ment. This transformation introduces a global alias variable for each
property of window. The variable is updated whenever an assignment
is made to its corresponding property.

T2 Conversely, declaring a global variable normally creates an alias prop-
erty on the window object, but this doesn’t hold in a SES environment.
This transformation adds a property on window for each global vari-
able. The property is updated whenever an assignment is made to its
corresponding global variable.

T3 Since SES enforces strict mode for all scripts, ES5 non-strict code might
be incompatible with SES. The most common incompatibility we have
encountered is the lack of this-coercion. That is, this is no longer
bound to the global window object in a function call. This trans-
formation replaces this by the expression (this === undefined ?
window : this).

We have implemented a client-side component for applying these transfor-
mations, using the UglifyJS JavaScript parser [20]. These transformations
do not provide a full translation from ES5 to SES, but they are sufficient to
make many legacy scripts work with our prototype.

4.5 Evaluation
In this section we evaluate to what extent JSand satisfies the requirements
set forth in Section 4.2.3.

4.5.1 Complete mediation

All sandboxed scripts are executed in an object-capability environment, set
up by the SES library. Our implementation of the Membrane pattern ensures

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 87/158

that each DOM access and JavaScript API call made by a sandboxed script
is assessed by the security policy. Based on the theory of object-capability
systems, this provides complete mediation.

Note that JSand provides a one-way isolation and hence makes no attempt
to protect a sandboxed script from its environment. That is, code running in
the global security context, such as browser plugins and unsandboxed scripts,
have the power to modify a sandbox’s security policy or to inject a DOM
proxy that allows access to any DOM object. However, since malicious global
code has already full power over the web page, we consider protecting against
such scenarios out of scope for our solution.

4.5.2 Backwards compatibility

We have extensively and successfully tested our prototype on a variety of
JavaScript scripts. In this section we report and discuss in detail three of the
most widespread included scripts around: Google Analytics, Google Maps
and the jQuery library. Google Analytics is included from more than 68% of
all domains from the Alexa Top 10 000, making it the most included script on
this list [24]. Google Maps is the most included web mashup API according
to [29], being used in 17.41% of registered mashups. jQuery is the most
popular JavaScript library in use today, included in more than 57% of the
top 10 000 websites to date [3]. As future work, we would like to extend our
evaluation to more legacy scripts.

Google Analytics Google Analytics (GA) is a web analytics service that
generates statistics about visitors to a website. The GA API allows web ad-
ministrators to collect custom visitor properties, in addition to the standard
properties that are collected by default (such as referrer and geographical
location). The collected statistics can be monitored using a dashboard inter-
face on the GA website.

To enable GA, the website owner must add a small JavaScript code tem-
plate provided by Google to the header of the page to track. This template
sets up an array of options to pass to the GA service and dynamically adds a
new script tag to the page to include the main GA script. Any script included
like this has unrestricted access to the DOM, making the page vulnerable to
malicious script inclusions.

Manual inspection of the GA script is practically impossible, since the
code is minified. Moreover, since the main GA script is loaded dynamically
from the Google servers, any static, offline security analysis would fail to
detect malicious changes introduced to the script after the initial analysis.
However, by running GA in a JSand sandbox with a policy that permits only

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 88/158

the operations necessary for a benign web analytics script, the impact of a
malicious action on behalf of the GA script can be reduced to a minimum.
The code snippet below shows how this can be implemented.

1 // main page :
2 var sb = new jsand . Sandbox (’ g ana l y t i c s . j s ’ , p o l i c y) ;
3 sb . load () ;

This code snippet creates a new sandbox and initializes it with the ganalytics.js
script, which is shown below and consists of the code template provided by
Google.

1 // gana l y t i c s . j s :
2 var _gaq = _gaq | | [] ;
3 _gaq . push ([’ _setAccount ’ , ’UA−xxxxxxxx−x ’]) ;
4 _gaq . push ([’ _trackPageview ’]) ;
5
6 (func t i on () {
7 var ga = document . createElement (’ s c r i p t ’) ;
8 ga . s r c = ’ http ://www. google−ana l y t i c s . com/ga . j s ’ ;
9 var s = document . getElementsByTagName (’ s c r i p t ’) [0] ;
10 s . parentNode . i n s e r tB e f o r e (ga , s) ;
11 }) () ;

Both the ganalytics.js script and the main ga.js script (which is loaded
from the code above) are executed in the same sandbox and are patched-up
automatically, based on the AST transformations described in Section 4.4.6.
The following code fragment shows the first two lines of the patched-up
ganalytics.js.

1 // patched−up gana l y t i c s . j s :
2 var _gaq = _gaq | | [] ;
3 window . _gaq = _gaq ;
4 [. . .]

The global variable _gaq is explicitly aliased as a property on window. This
transformation is necessary because the ga.js script frequently refers to the
_gaq array as window._gaq. Such references would fail without the patch
shown here.

The _gaq array exposes an API to interact with GA after it has been ini-
tialized, for instance to add a custom property to collect or to track the click
of a button. The website owner can access this array using the innerEval
method described in Section 4.4.2. To facilitate these interactions and to
make abstraction of the fact that GA is running in a sandbox, the website
owner could implement an object that automatically forwards its calls to the
_gaq array inside the sandbox.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 89/158

Clearly, the effort required to run GA in a JSand sandbox is minimal and
introduces no disruptive changes whatsoever. Nevertheless, the power of the
GA script is reduced to a safe minimum, dramatically reducing the impact
of a malicious script inclusion attack.

Google Maps The Google Maps (GM) API enables website owners to
embed a Google Maps gadget on their website. The standard way to add
this gadget to a page is to (1) place a div element somewhere in the body
where the map should be displayed, (2) add a script tag to the head of the
page, which loads the GM library from the Google servers and (3) add a
small piece of JavaScript code to the page, to create a new GM instance in
the div element.

As with Google Analytics, the default way of including the GM script
lets it have unrestricted access to the DOM and JavaScript APIs, putting
the confidentiality and integrity of the entire web page at risk. JSand enables
the website owner to confine the GM gadget to a sandbox with the minimal
privileges required for legitimate operation.

The steps required to run GM in a JSand sandbox are very similar to
the standard steps described above. In step (1), in addition to placing a
div element somewhere in the body, the integrator must include the JSand
library and the libraries it depends on. In step (2), instead of adding a script
tag to directly load the GM library in the global page context, a new sandbox
must be created for the GM script to run in. In step (3), the website owner
can use the innerEval method to create a new GM instance in the sandbox.
These steps are depicted in the following code fragment.

1 var sb = new jsand . Sandbox (
2 ’ http ://maps . g oog l e ap i s . com/maps/ api / j s ? s enso r=f a l s e ’ , p o l i c y) ;
3 sb . load () ;
4 sb . innerEval (
5 " var m = window . goog l e . maps ;
6 var opt ions = {
7 cente r : new m. LatLng (−34.397 , 150 .644) ,
8 zoom : 8 , mapTypeId : m.MapTypeId .ROADMAP
9 } ;
10 var map = new m.Map(document . getElementById (’map_div ’) ,

opt i ons) ; "
11) ;

When the main GM script is loaded, a complex process of dynamically load-
ing and patching other scripts is performed in the background. Figure 7
depicts the sequence of scripts that are dynamically loaded from the main
js script initially loaded in step (2). In addition to the scripts shown in
this figure, more scripts are loaded and patched whenever the user changes

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 90/158

Figure 7: Tree of scripts dynamically loaded by Google Maps.

the map’s viewport (by dragging it or changing the zoom level). All three
translations described in Section 4.4.6 are required for the GM gadget to
work.

The GM API provides extensive support for customization, to support
feature-rich web mashups built around the GM gadget. For instance, website
owners can provide custom map overlays, place markers, register callbacks
for mouse events, etc. As with GA, a website owner can use the innerEval
method to interact with the sandboxed GM gadget.

The fact that JSand can successfully execute this gadget in a sandbox
without any compatibility issues, illustrates that our solution is able to sand-
box complex JavaScript gadgets that depend on dynamic script inclusions
and that feature advanced DOM interactions.

jQuery The jQuery library aims to provide a simple cross-browser API
for performing common JavaScript operations, such as creating and select-
ing DOM elements, handling events, invoking Ajax interactions, etc. While
jQuery can be used as an abstraction layer on top of an extensive set of Java-
Script APIs, a website owner typically uses only a limited subset of what the
library has to offer. By running jQuery in a sandbox with tight restrictions
on the permitted JavaScript API and DOM operations, the risk and impact
of a malicious script inclusion attack are reduced dramatically.

For our jQuery evaluation scenario, we executed jQuery together with the
jQuery-geolocation plugin [25] in a sandbox, using a fine-grained security
policy that allows us to toggle access to the JavaScript Geolocation API.
Disabling the Geolocation API in the policy effectively prevents jQuery from
using it in the sandbox. The following code fragment shows how this scenario
is implemented.

1 var sb = new jsand . Sandbox (’ jquery −1 . 7 . 2 . j s ’ , p o l i c y) ;

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 91/158

2 sb . load () ;
3 sb . innerLoadScr ipt (’ jquery−geo loca t i on −0.1 . j s ’) ;
4 sb . innerEval (
5 " i f (jQuery . g e o l o c a t i on . support ()) {
6 jQuery . g e o l o c a t i on . f i nd (func t i on (l o c) {
7 a l e r t (l o c . l a t i t u d e +\" , \"+ l o c . l ong i tude) ;
8 }) ;
9 } e l s e { a l e r t (’ Geo locat ion not supported ’) ; } ") ;

This scenario illustrates that, with minimal effort, a website owner can create
a secure JSand sandbox around an extensible JavaScript library, while still
being able to interact with it from outside the sandbox.

4.5.3 Performance benchmarks

To evaluate the runtime overhead of our prototype, we have conducted micro-
and macro-benchmarks. All benchmarks were run using Google Chrome
v20.0.1132.21 on Ubuntu 11.04 x86-64, running on an Intel Core 2 Duo T8300
2.4GHz processor with 4GiB of RAM.

Micro benchmarks

JSand framework load time To measure the load time of the JSand
framework, a page was created that loads the framework but doesn’t use
it. This page was reloaded 1000 times and the elapsed time was recorded.
The average load time measured in this way was 71.5±1.8ms. The same
experiment was run with all JavaScript code commented out, so the same
network load time would be maintained, but the code would not be executed.
The load time in this case was 23.0±0.2ms. This means that once loaded
from the network, the framework takes on average 48.5ms to deploy on the
client side.

Third-party library load time Similar experiments were performed to
measure the overhead of loading and parsing a third-party JavaScript library
into a JSand sandbox. We chose jQuery as a representative JavaScript li-
brary and loaded it in a JSand sandbox, as well as a regular, unsandboxed
JavaScript environment, using XHR and eval(). In both cases, we supplied
a real JavaScript library as well as a commented-out version to factor out
network overhead.

In a regular JavaScript environment, the code loads in 53.0±0.8ms and
26.8±0.2ms for normal and commented-out code respectively. Inside a JSand

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 92/158

sandbox, the code loads in 1458.2±16.0ms and 107.6±1.4ms respectively, so
that the overhead of parsing the library code is about 1350.6ms.

A large portion of this overhead is due to the script rewriter of the legacy
support layer described in Section 4.4.6. Since jQuery is SES-compliant,
this rewriting step is not required. Disabling it lowers the average load time
from 1458.2ms to 705.8±1.1ms, and the average overhead from 1350.6ms to
598.2ms. This means that 44.3% of the overhead can be contributed to our
efforts for making legacy code SES-compliant.

Membrane transition cost To verify the runtime overhead of a function
call crossing the membrane, a function was executed both inside and out-
side a JSand sandbox 1 million times and the elapsed time is recorded. We
chose the window.clearTimeout function as a representative function, be-
cause intuitively it should return quickly when no timer is registered. When
called from inside the sandbox, the window.clearTimeout call must cross
the membrane separating the sandbox from the real JavaScript environment.
Outside the sandbox, the average execution time is 0.9±0.0µs, while inside
the sandbox it is 8.0±0.1µs.

Macro benchmarks The most important metric that counts when exe-
cuting JavaScript in a browser, is the user experience. Ideally, the user should
not notice that JSand is being used at all. To measure how much overhead
the user experiences, we created a typical web application using Google Maps
and measured two things: the total load time of the web application, and
the delay a user experiences when interacting with it.

The load time of the web application was measured from the time the page
is loaded until the Google Maps API emits a ‘tilesloaded’ event, signaling that
the application is ready to be used. Running outside of the JSand sandbox,
this load time is 308.0±13.7ms, and 1432.8±24.2ms inside of it. Keeping in
mind that a large portion of this overhead is due to script-rewriting for legacy
code, the total overhead without the legacy support layer can be estimated
to be about 626.5ms.

To measure the delay experienced when interacting with the application,
we waited until the application was loaded, and then panned 400 px to the
right, 100 times. The average time elapsed between two pans was considered
as a reasonable approximation of the user-experienced delay. This delay is
320.2±0.8ms outside and 420.0±2.7ms inside the sandbox.

The overall performance of a JSand sandbox is acceptable. The overhead
when loading a reasonably-sized SES-compliant JavaScript library inside the
sandbox, is about 203%. For legacy scripts, JSand requires a code transfor-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 93/158

mation step that results in a total overhead of about 365%, but it is expected
that this step can be removed or at least sped up significantly for future Java-
Script code in future browsers. Furthermore, the tendency of users to keep
certain websites open using persistent tabs, makes the load time overhead less
important. Additionally, despite the nine-fold execution time of a function-
call traversing the sandbox membrane, the delay experienced by a user when
using a realistic web application inside a JSand sandbox, is an acceptable
31.2%, corresponding to an absolute delay on the order of 100ms.

4.6 Related work
Server-side processing of scripts A common technique for preventing
undesired script behavior is to restrict the untrusted code (i.e. the third-party
component) to a safe subset of JavaScript [16]. Compliance to the subset is
verified at the server side. The allowed operations within the subset pre-
vent the untrusted code from obtaining elevated privileges, unless explicitly
allowed by the integrator. ADSafe [4], ADsafety [28] and FBJS [34] are ex-
amples of techniques where third-party JavaScript must conform to a certain
JavaScript subset. Techniques such as Caja [21], Jacaranda [10] and Live
Labs’ Websandbox [19] on the other hand, statically analyze and rewrite the
third-party JavaScript on the server side into a safe version.

Instead of forcing the use of a JavaScript subset, the JavaScript code
can also be instrumented with extra checks that mediate access to certain
functionality. BrowserShield [30] and Browser-Enforced Embedded Policies
(BEEP) [11] are examples of such instrumentation on the server-side.

While safe subsets, code rewriting and server-side code instrumentation
can restrict third-party code at the source, their adoption by mashup integra-
tors is problematic. These techniques require either access to code running
on the server-side, or require the website owner to implicitly trust the Java-
Script provider to deliver safe JavaScript code. In real-world scenarios, it
is infeasible to impose any such restrictions on third-party code providers.
In contrast, JSand requires no server-side processing of the third-party code
and imposes no fundamental restrictions on included code.

Extending the browser with a reference monitor A second class of
techniques extends the browser to enforce code restrictions. Systems like
ConScript [18], WebJail [35] and Contego [14] require modifications to the
JavaScript engine to enforce policies on third-party code, while AdSentry
requires the installation of a Firefox extension to restrict the functionality
available to advertisements.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 94/158

Browser modifications to restrict third-party JavaScript can be imple-
mented very efficiently and can guarantee that enforcement cannot be cir-
cumvented. The major disadvantage of this approach however, is that the
browser must be modified. Unless all the users of a web application are using
a browser which implements the desired modification, there is little or no in-
centive for the website owner to make use of it. Because of the large variety
of active browser vendors and versions on the internet, it is unrealistic to
assume that a certain modification will ever be implemented in all browsers.
For this reason, JSand does not depend on any special browser-side features
except for what is available in the web standards.

Leveraging existing browser security features Finally, some approaches
leverage recent browser security extensions to contain scripts. The new
sandbox attribute of the iframe element in HTML5 [2] can restrict third-
party JavaScript in a very coarse-grained way: it only supports to completely
enable or disable JavaScript.

The Content Security Policy (CSP) [32] allows the insertion of a security
policy through HTTP response headers and meta tags, which must be en-
forced in the browser. This policy can restrict the locations a web application
loads its content from, thus preventing some forms of content-injection. How-
ever, CSP does not provide any fine-grained control over which JavaScript
functionality is available to a script.

AdJail [33] is geared towards securely isolating ads from a hosting page for
confidentiality and integrity purposes, while maintaining usability. The ad
is loaded on a shadow page that contains only those elements of the hosting
page that the web developer wishes the ad to have access to, and it relies
on the SOP to isolate the shadow page. Changes to the shadow page are
replicated to the hosting page if those changes conform to a specified policy.
Likewise, user actions on the hosting page are mimicked to the shadow page
if allowed by the policy. AdJail is a good approach to restrict access to the
DOM, but cannot enforce a policy on the other JavaScript APIs like JSand
does.

Self-protecting JavaScript (SPJS) [27, 17] is a client-side wrapping tech-
nique that applies advice around JavaScript functions, without requiring
browser modifications (unlike [18] or [35]). It builds on standard aspect-
oriented libraries for JavaScript. The wrapping code and advice are provided
by the server and are executed first, ensuring a clean environment to start
from. SPJS does not guarantee that all access-paths to certain JavaScript
functionality can be restricted, because the aspect library it relies on was not
designed with security in mind. JSand uses the Membrane pattern instead,

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 95/158

which was designed to provide complete mediation.
Secure ECMAScript (SES) [22] is a subset of ES5 strict which provides an

object-capability language. Unlike Caja, from which it originated, SES runs
completely on the client-side without any browser modifications. To the best
of our knowledge, JSand is the first fully functional JavaScript integration
technique built on SES, capable of handling legacy scripts such as Google
Maps and Google Analytics.

4.7 Conclusion
This paper introduced JSand, a server-driven but client-side JavaScript sand-
boxing framework that does not rely on any browser modifications. We have
implemented a prototype of this framework and evaluated it on the most
widespread JavaScript scripts around. Although there has been a lot of ac-
tivity in this research area, we are the first to deliver a solution that provides
complete mediation, backwards compatibility and an acceptable performance
overhead.

References
[1] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung,

Lieven Desmet, and Frank Piessens. Jsand: Complete client-side sand-
boxing of third-party javascript without browser modifications. In Pro-
ceedings of the 28th Annual Computer Security Applications Conference
(ACSAC 2012), pages 1–10. ACM, December 2012.

[2] Robin Berjon. W3C HTML5 Working Draft. http://www.w3.org/TR/
html5/, September 2012.

[3] BuiltWith. jQuery Usage Statistics. http://trends.builtwith.com/
javascript/jQuery.

[4] Douglas Crockford. ADsafe – making JavaScript safe for advertising.
http://adsafe.org/.

[5] Tom Van Cutsem and Mark S. Miller. On the Design of the ECMAScript
Reflection API. Technical Report VUB-SOFT-TR-12-03, Department
of Computer Science, Vrije Universiteit Brussel, February 2012.

[6] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank
Piessens. FlowFox: a web browser with flexible and precise informa-
tion flow control. In Proc. of CCS’12. ACM, 2012.

FP7-ICT-2009-5
Project No. 256964

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://trends.builtwith.com/javascript/jQuery
http://trends.builtwith.com/javascript/jQuery
http://adsafe.org/

D4.3: Secure Composition Policies and Server-driven Enforcement 96/158

[7] Philippe De Ryck, Maarten Decat, Lieven Desmet, Frank Piessens, and
Wouter Joosen. Security of web mashups: a survey. In Proc. of Nord-
Sec’10. Springer, 2011.

[8] Dominique Devriese and Frank Piessens. Noninterference through secure
multi-execution. In Proc of SP’10, IEEE, pages 109–124, Washington,
DC, USA, 2010.

[9] Mario Heiderich. Locking the Throne Room - How ES5+ will
change XSS and Client Side Security. http://www.slideshare.net/
x00mario/locking-the-throneroom-20, November 2011.

[10] Jacaranda. Jacaranda. http://jacaranda.org.

[11] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script In-
jection Attacks with Browser-Enforced Embedded Policies. In Proc. of
WWW’07, pages 601–610, New York, NY, USA, 2007. ACM.

[12] John Resig. Pure JavaScript HTML Parser. http://ejohn.org/blog/
pure-javascript-html-parser/.

[13] Amit Klein. DOM Based Cross Site Scripting or XSS of
the Third Kind. http://www.webappsec.org/projects/articles/
071105.shtml, April 2005.

[14] Tongbo Luo and Wenliang Du. Contego: capability-based access control
for web browsers. TRUST’11, pages 231–238, Berlin, Heidelberg, 2011.
Springer-Verlag.

[15] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted web applications. In Proc. of SP’10. IEEE, 2010.

[16] S. Maffeis and A. Taly. Language-based isolation of untrusted Javascript.
In Proc. of CSF’09, IEEE, 2009.

[17] J. Magazinius, P. Phung, and D. Sands. Safe wrappers and sane policies
for self protecting JavaScript. In Proc. of Nordsec’10, 2010.

[18] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying and en-
forcing fine-grained security policies for Javascript in the browser. In
Proc. of SP’10, 2010.

[19] Microsoft Live Labs. Live Labs Websandbox. http://websandbox.org.

[20] Mihai Bazon. UglifyJS. https://github.com/mishoo/UglifyJS/.

FP7-ICT-2009-5
Project No. 256964

http://www.slideshare.net/x00mario/locking-the-throneroom-20
http://www.slideshare.net/x00mario/locking-the-throneroom-20
http://jacaranda.org
http://ejohn.org/blog/pure-javascript-html-parser/
http://ejohn.org/blog/pure-javascript-html-parser/
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://websandbox.org
https://github.com/mishoo/UglifyJS/

D4.3: Secure Composition Policies and Server-driven Enforcement 97/158

[21] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay.
Caja - safe active content in sanitized JavaScript. Technical report,
Google Inc., June 2008.

[22] Mark Samuel Miller. Secure EcmaScript 5. http://code.google.com/
p/es-lab/wiki/SecureEcmaScript.

[23] Mark Samuel Miller. Robust composition: towards a unified approach
to access control and concurrency control. PhD thesis, Johns Hopkins
University, Baltimore, MD, USA, 2006. AAI3245526.

[24] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven
Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. You are what you include: Large-scale evaluation of
remote JavaScript inclusions. In Proc. of CCS’12, October 2012.

[25] NoMoreSleep. jquery-geolocation. http://code.google.com/p/
jquery-geolocation/.

[26] Phu H. Phung and Lieven Desmet. A two-tier sandbox architecture for
untrusted javascript. In Proc. of JSTools’12, pages 1–10, New York, NY,
2012. ACM.

[27] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight self-
protecting JavaScript. ASIACCS ’09, pages 47–60, New York, NY, USA,
2009. ACM.

[28] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shri-
ram Krishnamurthi. ADsafety: type-based verification of JavaScript
Sandboxing. In Proc. of USENIX’11, SEC’11, pages 12–12, Berkeley,
CA, USA, 2011.

[29] Programmable Web. Keeping you up to date with APIs, mashups and
the Web as platform. http://www.programmableweb.com/.

[30] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and
Saher Esmeir. BrowserShield: vulnerability-driven filtering of dynamic
HTML. In Proc. of OSDI’06, pages 61–74, Berkeley, CA, USA, 2006.
USENIX Association.

[31] SANS Institute. SANS: Top Cyber Security Risks.
http://www.sans.org/top-cyber-security-risks/, 2009.

FP7-ICT-2009-5
Project No. 256964

http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://code.google.com/p/jquery-geolocation/
http://code.google.com/p/jquery-geolocation/
http://www.programmableweb.com/

D4.3: Secure Composition Policies and Server-driven Enforcement 98/158

[32] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web
with content security policy. In Proc. of WWW’10, pages 921–930, New
York, NY, 2010. ACM.

[33] Mike Ter Louw, Karthik Thotta Ganesh, and V.N. Venkatakrishnan.
AdJail: Practical Enforcement of Confidentiality and Integrity Policies
on Web Advertisements. In 19th USENIX Security Symposium, August
2010.

[34] The FaceBook Team. FBJS. http://wiki.developers.facebook.
com/index.php/FBJS.

[35] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens,
and Wouter Joosen. WebJail: least-privilege integration of third-party
components in web mashups. ACSAC ’11, pages 307–316, New York,
NY, USA, 2011. ACM.

[36] Tom Van Cutsem and Mark S. Miller. Proxies: design principles for
robust object-oriented intercession APIs. SIGPLAN Not., 45(12):59–72,
October 2010.

[37] W3C. Document Object Model (DOM) Technical Reports. http://
www.w3.org/DOM/DOMTR.

[38] W3C. W3C Standards and drafts - Cross-Origin Resource Sharing.
http://www.w3.org/TR/cors/.

[39] W3C. W3C Standards and drafts - Uniform Messaging Policy, Level
One. http://www.w3.org/TR/UMP/.

[40] Yahoo! Developer Network. JavaScript: Use a Web Proxy for
Cross-Domain XMLHttpRequest Calls. http://developer.yahoo.
com/javascript/howto-proxy.html.

[41] Chuan Yue and Haining Wang. Characterizing Insecure JavaScript Prac-
tices on the Web. In Proc. of WWW’09, pages 961–961, April 2009.

[42] M. Zalewski. Browser Security Handbook. http://code.google.com/
p/browsersec/wiki/Main.

FP7-ICT-2009-5
Project No. 256964

http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/cors/
http://www.w3.org/TR/UMP/
http://developer.yahoo.com/javascript/howto-proxy.html
http://developer.yahoo.com/javascript/howto-proxy.html
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main

D4.3: Secure Composition Policies and Server-driven Enforcement 99/158

5 PreparedJS: Secure Script-Templates for Java-
Script13

5.1 Introduction
5.1.1 Motivation

Cross-site Scripting (XSS) is one of the most prevalent security problems of
the Web. It is listed at the second place in the OWASP Top Ten list of
the most critical Web application security vulnerabilities [19]. Even though
the basic problem has been known since at least 2000 [4], XSS still occurs
frequently, even on high-profile Web sites and mature applications [25]. The
primary defense against XSS is secure coding on the server-side through care-
ful and context-aware sanitization of attacker provided data [20]. However,
the apparent difficulties to master the problem on the server-side have let to
investigations of client-side mitigation techniques.

A very promising approach in this area is the Content Security Policy
(CSP) mechanism, which is currently under active development and has al-
ready been implemented by the Chrome and Firefox Web browsers. CSP
provides powerful tools to mitigate the vast majority of XSS exploits.

However, in order to properly benefit from CSP’s protection capabilities,
site owners are required to conduct significant changes in respect to how
JavaScript is used within their Web application, namely getting rid of inline
JavaScript, such as event handlers in HTML attributes, and string-to-code
transformations, which are provided by eval() and similar functions (see
Sec. 5.2.2 for further details). Unfortunately, as we will discus in Section 5.3,
all this effort does not result in complete protection against XSS attacks.
Some potential loopholes remain, which cannot be closed by the current
version of CSP.

Contribution We explore the remaining weaknesses of CSP (see Sec. 5.3)
and examine which steps are necessary to fill the identified gaps for com-
pleting CSP’s protection capabilities. Based on our results, we propose Pre-
paredJS, an extension of the CSP mechanism (see Sec. 5.5). PreparedJS is
built on two pillars: A templating format for JavaScript which follows SQL’s
prepared statement model (see Sec. 5.5.1) and a light-weight script check-
summing scheme, which allows fine-grained control over permitted script
code (see Sec. 5.5.2). In combination with the base-line protection provided

13This paper has been published as [9]: Martin Johns: PreparedJS: Secure Script-
Templates for JavaScript, Proceedings of the 10th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA ’13), Berlin, Germany, July 2013

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 100/158

by CSP, PreparedJS is able to prevent the full spectrum of potential XSS
attacks. We outline how PreparedJS can be realized as a native browser
component while providing backwards compatibility with legacy browsers
that cannot handle PreparedJS’s script format. Furthermore, we report on
a prototypical implementation in the form of a browser extension for Google
Chrome (see Sec. 5.6).

5.2 Technical background
5.2.1 Cross-site Scripting (XSS)

The term Cross-site Scripting (XSS) [27] summarizes a set of attacks on Web
applications that allow an adversary to alter the syntactic structure of the
application’s Web content via code or mark-up injection.

Even though XSS, in most cases, also enables the attacker to inject HTML
or CSS into the vulnerable application, the main concern with this class of
attacks is the injection of JavaScript. JavaScript injection actively circum-
vents all protective isolation measures which are provided by the same-origin
policy [24], and empowers the adversary to conduct a wide range of potential
attacks, ranging from session hijacking [18], over stealing of sensitive data [29]
and passwords [28], up to the creation of self-propagating JavaScript worms.

To combat XSS vulnerabilities, it is recommended to implement a careful
and robust combination of input validation (only allow data into the appli-
cation if it matches its specification) and output sanitation (encode all po-
tential syntactic content of untrusted data before inserting it into an HTTP
response). However, a recent study [25] has shown, that this protective ap-
proach is still error prone and the quantitative occurrence of XSS problems
is not declining significantly.

5.2.2 Content Security Policies (CSP)

Due to the fact, that even after several years of increased attention to the
XSS problem, the number of vulnerabilities remains high, several reactive ap-
proaches have been proposed, which mitigate the attacks, even if a potential
XSS vulnerability exists in a Web application.

Content Security Policies (CSP) [26] is such an approach: A Web appli-
cation can set a policy that specifies the characteristics of JavaScript code
which is allowed to be executed14. CSP policies are added to a Web docu-

14CSP also provides further features in respect to other HTML elements, such as images
or iframe. However, these features do not affect JavaScript execution and, hence, are
omitted in the CSP description for brevity reasons.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 101/158

1 Content -Security - Policy : default -src ’self ’; img -src *;
2 object -src media. example .com;
3 script -src trusted . example .com;

Figure 8: CSP example

ment through an HTTP header or a Meta-tag (see Lst. 8 for an example).
More specifically, a CSP policy can:

1. Disallow the mixing of HTML mark-up and JavaScript syntax in a sin-
gle document (i.e., forbidding inline JavaScript, such as event handlers
in element attributes).

2. Prevent the runtime transformation of string-data into executable Java-
Script via functions such as eval().

3. Provide a list of Web hosts, from which script code can be retrieved.

If used in combination, these three capabilities lead to an effective thwart-
ing of the vast majority of XSS attacks: The forbidding of inline scripts ren-
ders direct injection of script code into HTML documents impossible. Fur-
thermore, the prevention of interpreting string data as code removes the dan-
ger of DOM-based XSS [11]. And, finally, only allowing code from whitelisted
hosts to run deprives the adversary from the capability to load attack code
from Web locations that are under his control.

In summary, strict CSP policies enforce a simple yet highly effective pro-
tection approach: Clean separation of HTML-markup and JavaScript code in
connection with forbidding string-to-code transformations via eval(). The
future of CSP appears to be promising. The mechanism is pushed into major
Web browsers, with recent versions of Firefox (since version 4.0) and Chrome
(since version 13) already supporting it. Furthermore, CSP is currently under
active standardization by the W3C [30].

However, using CSP comes with a price: Most of the current practices
in using JavaScript, especially in respect to inline script and using eval(),
have to be altered. Making an existing site CSP compliant requires significant
changes in the codebase, namely getting rid of inline JavaScript, such as event
handlers in HTML attributes, and string-to-code transformations, which are
provided by eval() and similar functions.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 102/158

5.3 CSP’s remaining weaknesses
In general, CSP is a powerful mitigation for XSS attacks. If a site issues
a strong policy, which forbids inline scripts and unsafe string-to-code trans-
forms, the vast majority of all potential exploits will be robustly prevented,
even in the presence of HTML injection vulnerabilities.

However, as we will show in this section, three potential attack variants
remain feasible under the currently standardized version 1.0 of CSP [30].
Furthermore, in Section 5.3.4, we will discuss to which degree the proposed
enhancements of CSP 1.1 affect these identified weaknesses.

5.3.1 Weakness 1: Insecure server-side assembly of JavaScript
code

As described above, CSP can effectively prevent the execution of JavaScript
which has been dynamically assembled on the client-side. This is done by
forbidding all functions that convert string data to JavaScript code, such as
eval() or setTimeout(). However, if a site’s operator implements dynamic
script assembly on the server-side, this directive is powerless.

Server-side generated JavaScript is utilized to fill values in scripts with
data that is retrieved at runtime. If such data can be controlled by the
attacker, he might be able to inject further JavaScript.

Take for instance the scenario that is outlined in Listings 9 and 10: A
script-loader JavaScript (loader.js, Lst. 9), is used to dynamically outfit
further JavaScript resources with runtime data via URL parameters15. The
referenced script (ga.php, Lst. 10) is assembled dynamically on the server-
side, including the dynamic data in the source code without any sanitization.

If the attacker is able to control the document.location property, he can
break out of the variable assignment in line 5 and inject arbitrary JavaScript
code. Thus, he can effectively circumvent CSP’s protection features: The
attack uses no string-to-code conversion on the client-side. All the browser
retrieves is apparently static JavaScript. In addition, the attack does not
rely on inline scripts, as the injected script is included externally. Finally,
the vulnerable script is part of the actual application and, hence, the script’s
hosting domain is included in the policy’s whitelist.

15The depicted code was consciously designed in a naive fashion to make the issue easily
understandable. In more realistic conditions, the attacker controlled data could find its
way into the script assembly in more subtle fashions, e.g., through existing data in the
user’s session.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 103/158

1 (function () {
2 var ga = document . createElement (’script ’);
3 ga.src =

’http :// serv.com/ga.php? source =’+ document . location ;
4 var s = document . getElementsByTagName (’script ’)[0];
5 s. parentNode . insertBefore (ga , s);
6 })();

Figure 9: JavaScript for dynamic script loading (loader.js)

1 // JS code to set a global variable with the
2 // request ’s call context
3 <?php
4 $s = ’$_GET [" source "]’;
5 echo "var callSource =’".$s." ’;";
6 ?>
7 // [... rest of the JavaScript]

Figure 10: Variable setting script (ga.php)

5.3.2 Weakness 2: Full control over external, whitelisted scripts

It is common practice to include external JavaScript components from third
party hosts into Web applications. This is done to consume third party
services (such as Web analytics), enhance the Web application with addi-
tional functionality (e.g., via integrating external mapping services), or for
monetary reasons (i.e, to include advertisements).

Recently Nikiforakis et al. conducted a wide scale analysis on the current
state of cross-domain inclusion of third party JavaScripts [17]. Their survey
showed that 88.45% of the Alexa top 10,000 Web sites included at least one
remote JavaScript. If the attacker is able to control the script’s content,
which is provided by the external provider, he is able to execute JavaScript
in the context of the targeted Web application.

A straight forward scenario for such an attack is a full compromise of
one of the external script providers for the targeted site. In such a case, the
adversary is able to inject and execute arbitrary JavaScript in the context
of targeted application. To examine this potential threat, Nikiforakis et al.
created a security metric for script providers, which is based on indicators for
maintenance quality of the hosts. Subsequently, they compared the security
score of the including sites to the score of the consumed script providers:
In approximately 25% of all cases, the security score of the script provider

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 104/158

was lower than the score of the consumer, suggesting that a compromise of
the script provider was more likely than a compromise of the targeted Web
application.

As alternatives to a full compromise of the script provider, Nikiforakis et
al. list four further, more subtle attacks which enable the same class of script
inclusion attacks and show their practical applicability (see [17] for details).

CSP is not able to protect against such cases: To utilize external Java-
Script components, a CSP-protected site has to whitelist the script provider’s
domain in the CSP policy. However, as the adversary is able to control the
contents of the whitelisted host, he is able to circumvent CSP’s protection
mechanism.

5.3.3 Weakness 3: Injection of further script-tags

This class of potential CSP circumvention was first observed by Michael
Zalewski [32]: Given an HTML-injection vulnerability, a strict CSP policy
will effectively prevent the direct injection of attacker-provided script code.
However, he still is be able to inject HTML markup including further script-
tags pointing to the whitelisted domains.

This way an attacker is able to control the URLs and order from which
the scripts in a Web page are retrieved. Thus, he might be able to combine
existing scripts in an unforeseen fashion. All scripts in a Web page run
in the same execution context. JavaScript provides no native isolation or
scoping, e.g., via library specific name-spaces. Hence, all side-effects that a
script causes on the global state directly affect all scripts that are executed
subsequently. Given the growing quantity and complexity of script code
hosted by Web sites, a non-trivial site might provide an attacker with a well
equipped toolbox for this purpose. Also, the adversary is not restricted to
the application’s original site. Scripts from all domains that are whitelisted
in the CSP-policy can be combined freely.

Only little research has been conducted to validate this class of attacks.
Nonetheless, such attacks are theoretically possible. Furthermore, with the
ever-growing reliance on client-side functionality and the rising number of
available JavaScripts their likelihood can be expected to increase.

5.3.4 CSP 1.1’s script-nonce directive

The 1.0 version of CSP currently holds the status of a W3C “Candidate
Recommendation”. This means the significant features of the standard are
mostly locked and are very unlikely to change in the further standardization
process. Hence, major changes and new features of CSP will happen in the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 105/158

1 Content -Security - Policy : script -src ’self ’;
2 script -nonce A3F1G1H41299834E ;

Figure 11: CSP 1.1 policy requiring script-nonce

1 <script nonce=" A3F1G1H41299834E ">
2 alert("I execute ! Hooray !");
3 </script >
4 <script > alert("I don ’t execute . Boo!"); </script >

Figure 12: Exemplified usage of script-nonce

subsequent versions of CSP. The next iteration of the standard is CSP version
1.1, which is currently under active discussion [31].

Among other changes, that primarily focus on the data exfiltration aspect
of CSP, the next version of the standard introduces a new directive called
script-nonce. This directive directly relates to a subset of the identified
weaknesses of CSP 1.0. In case, that a site’s CSP utilizes the script-nonce
directive (see Lst. 11), the policy specifies a random value that is required to
be contained in all script-tags of the site. Only JavaScript in the context of
a script-tag that carries the nonce value as an attribute value is permitted
to be executed (see Lst. 12). For apparent reasons, a site is required to renew
the value of the nonce for every request. Please note, that the nonce is not a
signature or hash of the script nor has it other relations to the actual script
content. This characteristic allow the usage of the directive to reenable inline
scripts (as depicted in Lst. 12) without significant security degradation.

Effect on the identified weaknesses: The script-nonce directive ef-
fectively prevents the attacker from injecting additional script-tags into a
page, as he won’t be able to insert the correct nonce value into the tag. In
this section, we examine to which degree the directive is able to mitigate the
identified weaknesses:

Unsafe script assembly: To exploit this weakness, an attacker is not
necessarily required to inject additional script-tags into the page. The un-
safe script assembly can also happen in legitimate scripts due to attacker
controlled data which was transported through session data or query param-
eters set by the vulnerable application itself.

Adversary controlled scripts: In such cases, the directive has no ef-
fect. The script import from the external host is intended from the vulnerable
application. Hence, the corresponding script-tag will carry the nonce and,

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 106/158

thus, is permitted to be executed.
Adversary controlled script tags: This weakness can be successfully

mitigated through the directive. As the attacker is not able to guess the
correct nonce value, he cannot execute his attack through injecting additional
script-tags.

Only the third weakness can be fully mitigated through the usage of
script-nonces. The reason for the persistence of the other two problems, lies
in the missing relationship between the nonce and the script content. A
further potential downside of the script-nonce directive is that it requires
dynamic creation of the CSP policy for each request. Hence, a rollout of a
well audited, static policy is not possible.

5.3.5 Analysis

The discussed CSP weaknesses are caused by two characteristics of the policy
mechanism:

1. A site can only specify the origins which are allowed to provide script
content, but not the actually allowed scripts.

2. Even if a site would be able to provide more fine-grained policies on a
per-script-URL level, at the moment there are no client-side capabilities
to reason about the validity of the actual script content.

The first characteristic is most likely a design decision which aims to make
CSP more easily accessible and maintainable to site-owners. It could be
resolved through making the CSP policy format more expressive. However,
the second problem is non-trivial to address, especially in the presence of
dynamically assembled scripts.

5.4 Goal: Stable Cryptographic Checksums for Scripts
As deducted above, all existing loopholes which allow the circumvention of
CSP can be reduced to the fact that no reliable link exists between the policy
and the actual script code. Hence, a mechanism is needed that allows site
owners to clearly define which exact scripts are allowed to be executed. And,
as seen in Sec. 5.3.1, this specification mechanism should not only rely on a
script’s URL. It should also take the script’s content into consideration.

A straight forward approach to solve this problem is utilizing script signa-
tures or cryptographic checksums, that are calculated over the scripts’ source
code: On deploy-time the checksums of all legitimate JavaScripts are gener-
ated and are included in an extended CSP policy. At runtime, this policy

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 107/158

is communicated to the browser which in turn only allows the execution of
scripts with correct checksums. This technique works well as long as only
static scripts are utilized.

Unfortunately, this approach is too restrictive. As soon as the need for
dynamic data values during script assembly occurs, the mechanism cannot be
applied anymore: The source code of the scripts is non-static and, hence, cre-
ating source code checksums on deploy-time is infeasible. However, creating
these checksums at runtime defeats their purpose, as in such cases in-script
injection XSS (see Sec. 5.3.1) will be included in the checksum and, thus, the
browser will allow the script to be executed.

Therefore, a secure mechanism is needed which allows the creation of
stable cryptographic checksums of script code while still allowing a certain
degree of flexibility in respect to run-time script creation.

5.5 PreparedJS
In this section, we present PreparedJS - our approach to fill the identified
weaknesses of CSP. PreparedJS is built on two pillars:

• A templating mechanism, that enables developers to separate dynamic
data values from script code, thus, allowing the usage of purely static
scripts without losing needed flexibility,

• and a script checksumming scheme, that allows the server to non-
ambiguously communicate to the browser which scripts are allowed
to run.

As the name of our mechanism suggests, the templating mechanism is
inspired by SQL’s prepared statements: In a prepared statement, the query
syntax is separated from the data values, using placeholders. At runtime,
this statement is passed to the database together with a set of values which
are to be used within the query at the placeholders’ position. This way, the
statement can be outfitted with dynamic values. As the syntactic structure
of the statement has already been processed by the database engine, before
the placeholders are exchanged with the data values, code injection attacks
are impossible.

Following the prepared statement’s model, PreparedJS defines a Java-
Script variant which allows placeholder for data values, which will be filled at
runtime in a fashion that is unsusceptible to code injection vulnerabilities (see
Sec. 5.5.1 for details). This way, developers can create completely static script
source code, for which the calculation of stable cryptographic checksums on

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 108/158

1 // JS code to set a global variable with the
2 // request ’s call context
3 var callSource = ? source ?;
4 // [... rest of the JavaScript]

Figure 13: PreparedJS variable setting script (ga.js)

deploy-time is feasible. While the Web application is accessed, only scripts
which have a valid checksum are allowed to run: If the checksum checking
terminates successfully, the data values, which are retrieved along with the
script code, are inserted into the respective placeholders, thus, creating a
valid JavaScript, that can be executed by the Web browser.

5.5.1 JavaScript templates for static server-side scripts

In this section, we give details on the PreparedJS templating mechanism.
The mechanism consists of two components: The script template and the
value list.

The PreparedJS script template format supports using insertion marks
in place of data values. These placeholders are named using the syntactic
convention of framing the placeholders identifier with question marks, e.g.,
?name?. Such placeholders can be utilized in the script code, wherever the
JavaScript grammar allows the injection of data values. See Listing 13 for a
template which represents the dynamic script of Listing 10.

The PreparedJS value list contains the data values, which are to be ap-
plied during script execution in the browser. The list consists of identifier/-
value pairs, in which the identifier links the value to the respective place-
holder within the script template. The values can be either basic datatypes,
i.e., strings, booleans, numbers, or JSON (JavaScript Object Notation [5])
formatted complex JavaScript data objects. The latter option allows the
insertion of non-trivial data values, such as arrays or dictionaries.

Also, the value list itself follows the JSON format, which is very well
suited for this purpose: The top level structure represents a key/value dic-
tionary. By using the placeholder identifiers as the keys in the dictionary,
a straight forward mapping of the values to insertion points is given. Fur-
thermore, JSON is a well established format with good tool, language, and
library support for creation and verification of JSON syntax. See Listing 14
for a PHP-script which creates the value list for Lst. 13 according to the
dynamic JavaScript assembly in Lst. 10.

In the communication with the Web browser, the script template and the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 109/158

1 <?php
2 $source = $_GET[" source "];
3 $vals = array (’callSource ’ => $source);
4 echo json_encode ($vals);
5 ?>

Figure 14: Creating value list for Lst. 13 (ga_values.php)

value list are sent in the same HTTP response, using an HTTP multipart
response (see Lst. 15).

5.5.2 Code legitimacy checking via script checksums

As discussed in Section 5.3, parts of the existing shortcomings of CSP result
from the mechanism’s inability to specify which exact scripts are allowed to
run in the context of a given Web page. Within PreparedJS we fill the gap by
unambiguously identifying whitelisted scripts through their script checksums.

A script’s PreparedJS-checksum is a cryptographic hash calculated over
the corresponding PreparedJS script template. The script’s value list is not
included in the calculation. This allows a script’s values to change on run
time without affecting the checksum.

To whitelist a specific scripts, a policy lists the script’s checksums in the
policy declaration (see Sec. 5.5.3). For each script that is received by the
browser, the browser calculates the checksum of the corresponding script
template and verifies that it indeed is contained in the policy’s set of allowed
script checksums. If this is the case, the script is permitted to execute. If
not, the script is discarded.

This approach is well aligned with the applicable attacker type. The sole
capability of the XSS Web attacker consists of altering the syntactic struc-
ture of the application’s HTML content. The XSS attacker is not able to
alter the application’s CSP policy, which is generally transported via HTTP
header (if the attacker is able to compromise the site’s CSP itself, all provided
protection is void anyway). Hence, if the application’s server-side can unam-
biguously communicate to the browser which exact scripts are whitelisted,
altering the syntactic structure of the document has no effect.

For this purpose, cryptographic checksums are well suited: The checksum
is sufficient to robustly identify the script, as long as a strong cryptographic
hash function algorithm, such as SHA256, was used. Due to the algorithm’s
security properties, is it a reasonable assumption that the attacker is not
able to produce a second script which both carries his malicious intend and

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 110/158

1 HTTP /1.1 200 OK
2 Date: Thu , 23 Jan 2012 10:03:25 GMT
3 Server : Foo /1.0
4 Content -Type: multipart /form -data; boundary =xYzZY
5
6 --xYzZY
7 Content -Type: application / pjavascript ;
8 charset =UTF -8
9 Content - Disposition : form -data;name =" preparedJS "

10
11 // JS code to set a global variable with the
12 // request ’s call context
13 var callSource = ? callSource ?;
14 --xYzZY
15 Content -Type: application /json
16 Content - Disposition : form -data;name =" valueList "
17
18 {" callSource ": "http :// serv.com?this=that# attackerData "}
19 --xYzZY --

Figure 15: PreparedJS HTTP multipart response

produces the same checksum.

5.5.3 Extended CSP Syntax

For the PreparedJS scheme to function, we require a simple extension of
the CSP syntax. In addition to the list of allowed script hosts, also the
list of allowed script checksums has to be included in a policy. This can
be achieved, for instance, using a comma delimited list of script checksums
following directly a whitelisted script host (see Lst. 16 for an example).

5.5.4 PreparedJS-aware script tags

CSP was carefully designed with backward compatibility in mind: If a legacy
browser, that does not yet implement CSP, renders a CSP-enabled Web page,
the CSP header is simply ignored and the page’s functionality is unaffected.

We intend to follow this example as closely as possible. However, as the
PreparedJS-format differs from the regular JavaScript syntax (see Lst. 15),
the server-side explicitly has to provide backwards compatible versions of
the script code. A PreparedJS-aware HTML document utilizes a slightly
extended syntax for the script-tag. The reference to the PreparedJS-script

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 111/158

1 X-Content -Security - Policy : script -src ’self ’
2 (135 c1ac6fa6194bab8e6c5d1e7e98cd9 ,
3 2 de1cd339756e131e873f3114d807e83)

Figure 16: Extended CSP syntax, whitelisting two script checksums

1 <script src ="[path to legacy script]"
2 pjs -src ="[path to preparedJS script]">

Figure 17: Extended PreparedJS script-tag syntax

is given in a dedicated pjs-src-attribute. If an application also wants to
provide a standard JavaScript for legacy fallback, this script can be referenced
in the same tag using the standard src-attribute (see Lst. 17). This approach
provides transparent backwards compatibility on the client-side: PreparedJS-
aware browsers only consider the pjs-src-attribute and handle it according
to the process outlined above. The legacy script is never touched by such
browsers. Older browsers ignore the pjs-src-attribute, as it is unknown to
them, and retrieve the fallback script referenced by src-attribute.

Please note: If naively implemented, this approach causes additional im-
plementation effort on the server-side, as all scripts have to be maintained
in two versions. However, in Section 5.6.2 we show, how applications can
provide backwards compatibility support for legacy browser automatically.

5.5.5 Summary: The three stages of PreparedJS

PreparedJS affects three stages in an application’s lifecycle: The development
phase, the deployment phase, and the execution phase:

During development: If the Web application requires JavaScript, with
dynamic, run-time generated data values, PreparedJS templates are created
for these scripts and methods are implemented to generate matching value
lists.

On deployment: For all JavaScripts and PreparedJS templates, which
are authorized to run in the context of the Web application, cryptographic
checksums are calculated. On application deployment these checksums are
added to the site’s extended CSP policy.

During execution: Before the execution of regular script code, the
CSP policy is checked, if the script’s host is whitelisted in the policy and
if for this host a list of allowed script checksums is given. If both is the
case, the cryptographic checksum for the received script code is calculated

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 112/158

and compared with the policy’s whitelisted script checksums. Only if the
calculated checksum can be found in the policy, the script is allowed to
execute.

For scripts in the PreparedJS format, first the script template is retrieved
from the multipart response (see Lst. 15). Then, the checksum is calculated
over the template. If the checksum test succeeds, the value list is retrieved
from the HTTP response and the placeholders in the script are substituted
with the actual values. After this step, the script is executed.

5.6 Implementation and enforcement
In this section, we show how the PreparedJS scheme can be practically re-
alized. In this context, we propose a native, browser-based implementation
(see Sec. 5.6.1) and discuss how backwards compatibility can be provided for
browsers that are not able to handle PreparedJS’s template format natively
(see Sec. 5.6.2).

5.6.1 Native, browser-based implementation

As mentioned earlier, the main motivation behind PreparedJS is to fill the
last loopholes that the current CSP approach still leaves for adversaries to
inject JavaScript into vulnerable Web applications. For this reason, we envi-
sion a native, browser-based implementation of PreparedJS as an extension
of CSP.

To execute JavaScript and enforce standard CSP, a Web browser already
implements the vast majority of processes which are needed to realize our
scheme, namely HTML/script parsing and checking CSP compliance of the
encountered scripts. Hence, an extension to support our scheme is straight
forward:

Whenever during the parsing process a script-tag is encountered, the
script’s URL is tested, if it complies with the site’s CSP policy. Furthermore,
if the policy contains script checksums for the URL’s host, the checksum for
the script’s source code is calculated and it is verified, that the checksum is
included in the list of legitimate scripts.

In case of PreparedJS templates, first the template code is parsed by
the browser’s JavaScript parser, treating the placeholders as regular data
tokens. Only after the parse tree of the script is established, the placeholders
are exchanged with the actual data values contained in the value list. This
way, regardless of their content, these values are unable to alter the script’s
syntactic structure, hence, no code injection attacks are possible.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 113/158

Prototypical implementation for Google Chrome: To gain insight in
practically using PreparedJS’s protection mechanism and experiment with
the templating format, we conducted a prototypical implementation of the
approach in the form of a browser extension for Google Chrome.

Chrome’s extension model does not allow direct altering of the browser’s
HTML parsing or JavaScript execution behavior. Hence, to implement Pre-
paredJS we utilized two capabilities that are offered by the extension model:
The network request interception API, to examine all incoming external
JavaScripts, and the extension’s interface to Chrome’s JavaScript debugger,
to insert the compiled PreparedJS-code into the respective script-tags.

When active, the extension monitors all incoming HTTP responses for
CSP headers. If such a header is identified, the extension extracts all con-
tained PreparedJS-checksums and intercepts all further network requests
that are initiated because of src-attribute in script tags in the corre-
sponding HTML document. Whenever such a request is encountered, the
extension conducts two actions: First, the actual request is redirected to a
specific JavaScript, that causes the corresponding JavaScript threat to trap
into Chromes’s JavaScript debugger via the debugger statement, causing the
JavaScript execution to briefly pause until the script legitimacy checking has
concluded. Furthermore, the request’s original URL is used to retrieve the ex-
ternal JavaScript’s source code, or, in in the presence of a pjs-src-attribute,
the PreparedJS-template and value list the extension.

For the retrieved source code or the PreparedJS-template the crypto-
graphic checksum is calculated using the SHA256 implementation of the
Stanford JavaScript Crypto Library16. If the resulting checksum was not
contained in the site’s CSP policy, the process is terminated and the script’s
source code is blanked out. If the checksum was found in the policy, the script
is allowed to be executed. In case of a PreparedJS-template, the template is
parsed and the items of the value-list are inserted in the marked positions.
To re-insert the resulting script code into the Web page, the extension uses
Chrome’s JavaScript debugger and the Javascript execution is resumed.

Performance measurements: Using our prototypical implementation, we
conducted measurements to gain first insight into the runtime characteris-
tics of the proposed mechanism. For several reasons, the obtained results
can be regarded as a worst case measurement: For one, the full implementa-
tion, including the template parsing and the checksum calculation, is done in
JavaScript instead of native code, resulting in implementations with inferior
performance compared to native code. Furthermore, the Chrome extension
model made it necessary to repeatedly conduct costly context-switches into

16Stanford JavaScript Crypto Library: http://crypto.stanford.edu/sjcl/

FP7-ICT-2009-5
Project No. 256964

http://crypto.stanford.edu/sjcl/

D4.3: Secure Composition Policies and Server-driven Enforcement 114/158

Site #a LoCb Defaultc Debugd PJSe Delta
local testpagef 2 3624 67.9 ms 230.6 ms 309.8 ms 79 ms
gmail.com 5 16132 2184.5 ms 2542.8 ms 2691.4 ms 148.6 ms
twitter.com 2 9195 1686.0 ms 2058.8 ms 2112.8 ms 54 ms
facebook.com 18 31701 2583.8 ms 4067.5 ms 4189.0 ms 121.5 ms

a: Number of external scripts contained in the page, b: Total lines of JS code after de-minimizing, c:

loadtime without extension, d: loadtime with extension (debugger only, no script processing),

e: load time with full PreparedJS functionality on all external scripts. f : Testpage with PreparedJS

template, served from the same machine as the test browser

Table 9: Performance of the browser extension, mean values over 10 iterations

Chrome’s debugger.
As it can be seen in Table 9, we conducted three separate measurements

of page load times: Without the extension, with the PreparedJS extension,
and with an “empty" extension that neither processes the script code nor
calculates checksums but traps into the debugger and conducts the network
interception steps. This was done to be able to distinguish between the per-
formance cost that is caused by the limitations of Chrome’s extension model,
i.e., the script redirection and context-switches into the debugger, and the
effort that is caused by the actual PreparedJS functionality, namely the cal-
culation of the script checksum and the parsing of the JavaScript code. As
the former only occurs because of the implementation method’s limitations
and won’t occur in a native integration in the browser’s CSP implementa-
tion, only the additional performance overhead of the latter measurement is
relevant in estimating PreparedJS’s actual cost (as reflected in the table). To
conduct the actual measurements we utilized the Page Benchmarker17 exten-
sion, using mean values of ten page load iterations over a standard German
household DSL line. During the tests, all encountered external JavaScripts
were treated, as if they were PreparedJS-templates and, thus, fully parsed
and checksummed.

In general, we do not expect the PreparedJS approach to cause noticeable
performance overhead (an estimate that is backed by the performance eval-
uation): PreparedJS only takes effect during the initial script parsing steps.
Here three new steps are introduced, that do currently not exist. The cryp-
tographic checksum has to be calculated, value list has to be parsed, and the
obtained values have to be inserted for the placeholders. Non of these steps
requires considerable computing effort: Modern hash-functions are highly
optimized to perform very well, the browser’s JavaScript engine has already

17Page Benchmarker: https://chrome.google.com/webstore/detail/
page-benchmarker/channimfdomahekjcahlbpccbgaopjll

FP7-ICT-2009-5
Project No. 256964

https://chrome.google.com/webstore/detail/page-benchmarker/channimfdomahekjcahlbpccbgaopjll
https://chrome.google.com/webstore/detail/page-benchmarker/channimfdomahekjcahlbpccbgaopjll

D4.3: Secure Composition Policies and Server-driven Enforcement 115/158

1.&

2.&

3.&

3.&
1.&PreparedJS&template&
2.&Value&list&
3.&Resul:ng&JavaScript&

Figure 18: Native browser support (top), backwards compatibility via server-
side composition service (bottom)

native capabilities for parsing the JSON-formatted value list, and inserting
the data values after the script parser’s tokenization step is straight foreword
and does not require sophisticated implementation logic. From here on, the
browser’s actual JavaScript execution functionality remains unchanged. Af-
ter script parsing, a PreparedJS script is indistinguishable from a regular
JavaScript and all recent performance increases of modern JavaScript en-
gines apply unmodified.

5.6.2 Transparently providing legacy support

As mentioned in Section 5.5.4, providing a second, backwards compatible ver-
sion of all scripts can cause considerable additional development and mainte-
nance effort. This in turn might hinder developer acceptance of the measure.

However, providing a backwards compatible version of scripts that only
exist in the PreparedJS format can be conveniently achieved with a server-
side composition service: Such a service compiles the script-template together
with the value list on the fly, before sending the resulting JavaScript to the
browser. For this purpose, the service conducts the exact same steps as
the browser in the native case (see Fig. 18): It retrieves the template, the
value-list, and the list of whitelisted checksums from the Web server. Then
it calculates the templates checksum and verifies that the script is indeed in
the whitelist. Then it parses the value list and inserts the resulting values
into the template in place of the corresponding value identifiers.

Please note: The actual script compiling process has to be carefully im-
plemented to avoid the reintroduction of injection vulnerabilities. For this,
the data values have to be properly sanitized, such that they don’t carry
syntactic content which could alter the semantics of the resulting JavaScript.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 116/158

Taking advantage of the composition service, the script-tags of the ap-
plication can reference the script in its PreparedJS form directly (via the
pjs-src-attribute) and utilize a specific URL-format for the legacy src-
attribute, which causes the server-side to route request through the compo-
sition service. For instance, this can be achieved through a reserved URL-
parameter which is added to the scripts URL, such as ?pjs-prerender=true.
All requests carrying this parameter automatically go through the composi-
tion service.

5.7 Discussion
5.7.1 Security evaluation

In this section, we verify that PreparedJS indeed closes CSP’s existing pro-
tection gaps, as identified in Section 5.3.

(1) Insecure server-side assembly of JavaScript code: Vulnerabilities,
such as discussed in Section 5.3.1 and shown in Lst. 9 and 10, cannot
occur if PreparedJS is in use. The cryptographic checksum of dynam-
ically assembled scripts vary for every iteration, hence, the checksum-
ming validation step will fail, as the script’s checksum won’t be included
in the site’s CSP policy (see below for a potential limitation, in case
the scheme is used wrongly).
The introduction of the PreparedJS templates offers a reliably secure
alternative to insecure server-side script assembly via string concatena-
tion. As the script’s syntactic structure is robustly maintained through
preparsing in the browser, before the potentially untrusted data values
are inserted, XSS vulnerabilities are rendered impossible, even in cases
in which the attacker controls the dynamic values.

(2) Full control over external, whitelisted script-sources: The mech-
anism’s fine-grained checksum whitelisting reliably prevents this at-
tack. Due to the checksum checking step, the attacker cannot leverage
a compromised external host or related weaknesses. If he attempts
to serve altered script code from the compromised origin this code’s
checksum won’t appear in the policy’s list of permitted scripts. Hence,
the browser will refuse to execute the adversary’s attack attempt.

(3) Attacker provided src-attributes in script-tags: Our proposed CSP
syntax allows for finer-grained control, which scripts are allowed to run
in the context of a given Web page. Hence, each page can exactly

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 117/158

specify which scripts it really requires, leaving the adversary only min-
imal opportunities to combine script side effects to his liking. This is
especially powerful, when it comes to script inclusion from large scale
external service providers, such as Facebook or Google, from which, in
most cases, only dedicated scripts are needed for the site to function.
Take for example analytics services: If a site utilizes the product Google
Analytics18, currently all scripts hosted on Google’s domain have to be
allowed by the CSP policy. This provides the attacker with a lot of
potential options under the scenario outlined in Sec. 5.3.3. Using our
extended policy mechanism, it is ensured that only the required ana-
lytics script will be executed by the browser.

Limitation – Checksumming of insecurely assembled code: Apparently, if a
developer creates an application which first insecurely creates dynamic script
code and only after this step creates the checksums and CSP policies, the
introduced protection measure can be circumvented. However, it is easy to
enforce development and deployment processes that prevent such a scenario:
The CSP policy generation (which requires a full set of calculated checksums)
has to be decoupled from the parts of the application that handles potentially
untrusted data. For instance, a requirement that decrees that all script
checksums are calculated on deploy-time of the application and remain stable
during execution would resolve the issue.

5.7.2 Cost of adoption

Before the introduction of CSP, a mechanism like PreparedJS would have
been infeasible, due to the highly flexible nature of the Web: JavaScript
can be inserted on many places within a Web page’s markup, e.g., through
numerous inline event handlers or JavaScript-URLs. Creating templates
and code checksums for each of these mini-scripts would cause very high
development and maintenance overhead, which in turn would hinder the
mechanisms acceptance.

However, CSP policies already impose considerable restrictions on how
JavaScript is used within Web applications. Thus, to adopt the Prepared-
JS mechanism on top, is only a small further step and the needed effort
appears to be manageable: Strong CSP policies requires all JavaScript to
be delivered by dedicated HTTP responses. Hence, script code is already
cleanly separated from HTML markup. In result, the total number of to be
handled scripts for CSP-enabled sites will be much smaller. Also, this clean
separation of the script-code from the markup eases the task of identifying

18Google Analytics: http://www.google.com/intl/de/analytics/

FP7-ICT-2009-5
Project No. 256964

http://www.google.com/intl/de/analytics/

D4.3: Secure Composition Policies and Server-driven Enforcement 118/158

the to-be signed code and creating the actual code checksums considerably.
We expect for a sanely designed Web site that the majority of its JavaScript
sources are contained in a limited number of dedicated places within the
application structure (such as a /js-path).

Starting with an enumerable set of dedicated paths in which the scripts
reside, the task to separate the script’s dynamic code insertion routines from
the main static script content is straight forward.

5.8 Related work
Server-side XSS prevention: Preventing and mitigating Cross-site Script-
ing attacks has received considerable attention. Most documented methods
aim to fight XSS through preventing the actual code injection. They ap-
proach the problem, for instance, via tracking untrusted data during execu-
tion [21, 16, 3], enforcing type safety [22, 8, 10], or providing integrity guar-
antees over the document structure [12, 15]. As a general observation, it can
be stated, that these approaches have to address a wide range of potential at-
tack variants and injection vectors, thus, requiring extensive browser/server
infrastructure or significant changes on the server-side. In comparison, the
scope of PreparedJS’s templating mechanism is much more focused on one
specific problem, hence, allowing for a concise solution that effectively can
leverage the existing CSP infrastructure.

Client-side techniques: Furthermore, conceptional close to out ap-
proach is BEEP [7], which proposes whitelisting of static scripts using cryp-
tographic checksums. Similar to our approach, a JavaScript’s checksum is
calculated and verified, before the script is executed. In comparison to our
approach, BEEP does not consider server-side script assembly. Instead, they
propose runtime calculation of the server-side checksums. Hence, the pro-
tection characteristics of BEEP do not significantly surpass CSP’s capabil-
ities while requiring a considerably different enforcement architecture. Our
approach only requires a extension to the browser’s CSP handling. Fur-
thermore, several approaches exist that aim to restrict JavaScript execution
in general, through applying fine-grained security policies that enforce least
privilege measures on script code [14, 1]. In certain cases, such techniques
can be utilized to soften the effect of successful XSS attacks. However, their
primary focus is at runtime control over third party JavaScript components.
Due to this focus, the provided means of these techniques are not sufficient
to reach the protection coverage of CSP (and, thus, of PreparedJS). Finally,
more techniques exist, that explicitly aim to prevent the execution of XSS
payloads. Most prominent in this area are browser-based XSS filters, which
are currently provided by Webkit-based browsers [2], Internet Explorer [23],

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 119/158

and the Firefox extension NoScript [13].
Script-less attacks: In [6] Heiderich et al. discuss XSS payloads that do

not rely on JavaScript execution. Instead, the presented attacks function via
the injection of HTML markup and CSS. The primary goal of these attacks
is data exfiltration, i.e., transmitting sensitive information, such as credit
card numbers or passwords, to the adversary. While CSP’s unsafe-inline
also restricts inline CSS declarations, such attacks are generally out of reach
for our proposed technique. PreparedJS sole focus is on secure JavaScript
generation and tight control over which scripts are allowed to be executed. A
generalization towards HTML markup or CSS is neither planned nor realistic.

5.9 Conclusion
The Content Security Policy mechanism is a big step forward to mitigate
XSS attacks on the client-side. Unfortunately, CSP is not bulletproof. In
this section, we identified three distinct scenarios in which a successful XSS
attack can occur even in the presence of a strong CSP. Based on this moti-
vation, we presented PreparedJS, an extension to CSP which addresses the
identified weaknesses: Through safe script templates, PreparedJS removes
the requirement of unsafe server-side JavaScript assembly. Furthermore, us-
ing script checksums, PreparedJS allows fine grained control via whitelisting
specific scripts. The combination of these two capabilities with the base-
line protection provided by CSP, full protection against XSS attacks can be
achieved in a robust fashion.

References
[1] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens,

and Wouter Joosen. WebJail: Least-privilege Integration of Third-party
Components in Web Mashups. In Proceedings of the ACSAC 2011 con-
ference, 2011.

[2] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions
considered harmful in client-side XSS filters. In WWW, 2010.

[3] Prithvi Bisht and V. N. Venkatakrishnan. Xss-guard: Precise dynamic
prevention of cross-site scripting attacks. In DIMVA, pages 23–43, 2008.

[4] CERT/CC. CERT Advisory CA-2000-02 Malicious HTML Tags Em-
bedded in Client Web Requests. [online], http://www.cert.org/
advisories/CA-2000-02.html (01/30/06), February 2000.

FP7-ICT-2009-5
Project No. 256964

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

D4.3: Secure Composition Policies and Server-driven Enforcement 120/158

[5] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627, http://www.ietf.org/rfc/rfc4627.
txt, July 2006.

[6] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and
Jörg Schwenk. Scriptless attacks: stealing the pie without touching the
sill. In ACM Conference on Computer and Communications Security,
2012.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection
Attacks with Browser-Enforced Embedded Policies. InWWW2007, May
2007.

[8] Martin Johns. Code Injection Vulnerabilities in Web Applications - Ex-
emplified at Cross-site Scripting. PhD thesis, University of Passau, 2009.

[9] Martin Johns. PreparedJS: Secure Script-Templates for JavaScript. In
10th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA ’13), LNCS. Springer, July 2013.

[10] Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim
Posegga. Secure Code Generation for Web Applications. In 2nd Interna-
tional Symposium on Engineering Secure Software and Systems (ESSoS
’10). Springer, 2010.

[11] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third
Kind. [online], http://www.webappsec.org/projects/articles/
071105.shtml, (05/05/07), Sebtember 2005.

[12] Mike Ter Louw and V.N. Venkatakrishnan. BluePrint: Robust pre-
vention of Cross-site Scripting Attacks for Existing Browsers. In IEEE
Symposium on Security and Privacy (Oakland’09), May 2009.

[13] Giorgio Maone. NoScript Firefox Extension. [software], http://www.
noscript.net/whats, 2006.

[14] Leo A. Meyerovich and V. Benjamin Livshits. Conscript: Specifying
and enforcing fine-grained security policies for javascript in the browser.
In IEEE Symposium on Security and Privacy, pages 481–496. IEEE
Computer Society, 2010.

[15] Yacin Nadji, Prateek Saxena, and Dawn Song. Document Structure
Integrity: A Robust Basis for Cross-site Scripting Defense. In NDSS
2009, 2009.

FP7-ICT-2009-5
Project No. 256964

http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.noscript.net/whats
http://www.noscript.net/whats

D4.3: Secure Composition Policies and Server-driven Enforcement 121/158

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. In 20th
IFIP International Information Security Conference, May 2005.

[17] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van
Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Gio-
vanni Vigna. You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In CCS 2012, 2012.

[18] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and
Wouter Joosen. SessionShield: Lightweight Protection against Session
Hijacking. In ESSoS 2011, February 2011.

[19] Open Web Application Project (OWASP). OWASP Top 10 for 2010
(The Top Ten Most Critical Web Application Security Vulnerabili-
ties). [online], http://www.owasp.org/index.php/Category:OWASP_
Top_Ten_Project, 2010.

[20] Open Web Application Project (OWASP). XSS (Cross Site Scripting)
Prevention Cheat Sheet. [online], https://www.owasp.org/index.
php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet, last
accessed 12/03/12, 2012.

[21] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against In-
jection Attacks through Context-Sensitive String Evaluation. In Recent
Advances in Intrusion Detection (RAID2005), 2005.

[22] W. Robertson and G. Vigna. Static Enforcement of Web Application In-
tegrity Through Strong Typing. In Proceedings of the USENIX Security
Symposium, Montreal, Canada, August 2009.

[23] David Ross. IE 8 XSS Filter Architecture / Implementa-
tion. [online], http://blogs.technet.com/b/srd/archive/2008/08/
19/ie-8-xss-filter-architecture-implementation.aspx, last ac-
cessed 05/05/12, August 2008.

[24] Jesse Ruderman. The Same Origin Policy. [online], http://www.
mozilla.org/projects/security/components/same-origin.html
(01/10/06), August 2001.

[25] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things
changed now? an empirical study on input validation vulnerabilities in
web applications. Computers & Security, 31(3):344–356, 2012.

FP7-ICT-2009-5
Project No. 256964

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

D4.3: Secure Composition Policies and Server-driven Enforcement 122/158

[26] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web
with content security policy. In WWW, 2010.

[27] The webappsec mailing list. The Cross Site Scripting (XSS) FAQ. [on-
line], http://www.cgisecurity.com/articles/xss-faq.shtml, May
2002.

[28] Ben Toews. Abusing Password Managers with XSS.
[online], http://labs.neohapsis.com/2012/04/25/
abusing-password-managers-with-xss/, last accessed 05/05/2012,
April 2012.

[29] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel,
Engin Kirda, and Giovanni Vigna. Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In NDSS 2007, 2007.

[30] W3C. Content Security Policy 1.0. W3C Candidate Recommendation,
http://www.w3.org/TR/2011/WD-CSP-20111129/, November 2012.

[31] W3C. Content Security Policy 1.1. W3C Editor’s Draft
02, https://dvcs.w3.org/hg/content-security-policy/raw-file/
tip/csp-specification.dev.html, December 2012.

[32] Michal Zalewski. Postcards from the post-XSS world. [online], http:
//lcamtuf.coredump.cx/postxss/, December 2011.

FP7-ICT-2009-5
Project No. 256964

http://www.cgisecurity.com/articles/xss-faq.shtml
http://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
http://labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/
http://www.w3.org/TR/2011/WD-CSP-20111129/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

D4.3: Secure Composition Policies and Server-driven Enforcement 123/158

6 Cookieless Monster: Exploring the Ecosys-
tem of Web-based Device Fingerprinting1920

6.1 Introduction
In 1994, Lou Montulli, while working for Netscape Communications, intro-
duced the idea of cookies in the context of a web browser [33]. The cookie
mechanism allows a web server to store a small amount of data on the com-
puters of visiting users, which is then sent back to the web server upon
subsequent requests. Using this mechanism, a website can build and main-
tain state over the otherwise stateless HTTP protocol. Cookies were quickly
embraced by browser vendors and web developers. Today, they are one of
the core technologies on which complex, stateful web applications are built.

Shortly after the introduction of cookies, abuses of their stateful nature
were observed. Web pages are usually comprised of many different resources,
such as HTML, images, JavaScript, and CSS, which can be located both
on the web server hosting the main page as well as other third-party web
servers. With every request toward a third-party website, that website has
the ability to set and read previously-set cookies on a user’s browser. For in-
stance, suppose that a user browses to travel.com, whose homepage includes
a remote image from tracking.com. Therefore, as part of the process of ren-
dering travel.com’s homepage, the user’s browser will request the image from
tracking.com. The web server of tracking.com sends the image along with
an HTTP Set-Cookie header, setting a cookie on the user’s machine, under
the tracking.com domain. Later, when the user browses to other websites
affiliated with tracking.com, e.g., buy.com, the tracking website receives its
previously-set cookies, recognizes the user, and creates a profile of the user’s
browsing habits. These third-party cookies, due to the adverse effects on a
user’s privacy and their direct connection with online behavioral advertis-
ing, captured the attention of both the research community [18, 19, 30] and
the popular media outlets [34] and, ever since, cause the public’s discom-
fort [36, 37].

19This paper has been published as [27]: Nick Nikiforakis, Alexandros Kapravelos,
Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, Cookieless monster:
Exploring the ecosystem of web-based device fingerprinting, IEEE Security and Privacy,
San Francisco, 19-22 May 2013

20For KU Leuven, this research was performed with the financial support of the Pre-
vention against Crime Programme of the European Union (B-CCENTRE), the Research
Fund KU Leuven, the EU FP7 projects NESSoS and WebSand, as well as the IWT project
SPION. For UCSB, this work was supported by the Office of Naval Research (ONR) un-
der grant N000140911042, and by the National Science Foundation (NSF) under grants
CNS-0845559 and CNS-0905537, and in part by Secure Business Austria.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 124/158

The user community responded to this privacy threat in multiple ways. A
recent cookie-retention study by comScore [7] showed that approximately one
in three users delete both first-party and third-party cookies within a month
after their visit to a website. Multiple browser-extensions are available that
reveal third-party tracking [13], as well as the “hidden” third-party affiliations
between sites [6]. In addition, modern browsers now have native support for
the rejection of all third-party cookies and some even enable it by default.
Lastly, a browser’s “Private Mode” is also available to assist users to visit a
set of sites without leaving traces of their visit on their machine.

This general unavailability of cookies motivated advertisers and track-
ers to find new ways of linking users to their browsing histories. Mayer
in 2009 [21] and Eckersley in 2010 [10] both showed that the features of a
browser and its plugins can be fingerprinted and used to track users without
the need of cookies. Today, there is a small number of commercial companies
that use such methods to provide device identification through web-based fin-
gerprinting. Following the classification of Mowery et al. [24], fingerprinting
can be used either constructively or destructively. Constructively, a cor-
rectly identified device can be used to combat fraud, e.g., by detecting that
a user who is trying to login to a site is likely an attacker who stole a user’s
credentials or cookies, rather than the legitimate user. Destructively, de-
vice identification through fingerprinting can be used to track users between
sites, without their knowledge and without a simple way of opting-out. Ad-
ditionally, device identification can be used by attackers in order to deliver
exploits, tailored for specific combinations of browsers, plugins and operat-
ing systems [16]. The line between the constructive and destructive use is,
however, largely artificial, because the same technology is used in both cases.

Interestingly, companies were offering fingerprinting services as early as
2009, and experts were already voicing concerns over their impact on user pri-
vacy [23]. Even when fingerprinting companies honor the recently-proposed
“Do Not Track” (DNT) header, the user is still fingerprinted for fraud detec-
tion, but the companies promise not to use the information for advertising
purposes [1]. Note that since the fingerprinting scripts will execute regard-
less of the DNT value, the verification of this promise is much harder than
verifying the effect of DNT on stateful tracking, where the effects are visible
at the client-side, in a user’s cookies [20].

In this paper, we perform a four-pronged analysis of device identifica-
tion through web-based fingerprinting. First, we analyze the fingerprinting
code of three large, commercial companies. We focus on the differences of
their code in comparison to Panopticlick [10], Eckersley’s “open-source” im-
plementation of browser fingerprinting. We identify the heavy use of Adobe
Flash as a way of retrieving more sensitive information from a client, in-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 125/158

cluding the ability to detect HTTP proxies, and the existence of intrusive
fingerprinting plugins that users may unknowingly host in their browsers.
Second, we measure the adoption of fingerprinting on the Internet and show
that, in many cases, sites of dubious nature fingerprint their users, for a vari-
ety of purposes. Third, we investigate special JavaScript-accessible browser
objects, such as navigator and screen, and describe novel fingerprinting
techniques that can accurately identify a browser even down to its minor
version. These techniques involve the ordering of methods and properties,
detection of vendor-specific methods, HTML/CSS functionality as well as
minor but fingerprintable implementation choices. Lastly, we examine and
test browser extensions that are available for users who wish to spoof the
identity of their browser and show that, unfortunately all fail to completely
hide the browser’s true identity. This incomplete coverage not only voids the
extensions but, ironically, also allows fingerprinting companies to detect the
fact that user is attempting to hide, adding extra fingerprintable information.
Our main contributions are:

• We shed light into the current practices of device identification through
web-based fingerprinting and propose a taxonomy of fingerprintable
information.

• We measure the adoption of fingerprinting on the web.

• We introduce novel browser-fingerprinting techniques that can, in mil-
liseconds, uncover a browser’s family and version.

• We demonstrate how over 800,000 users, who are currently utilizing
user-agent-spoofing extensions, are more fingerprintable than users who
do not attempt to hide their browser’s identity, and challenge the ad-
vice given by prior research on the use of such extensions as a way of
increasing one’s privacy [42].

6.1.1 Commercial Fingerprinting

While Eckersley showed the principle possibility of fingerprinting a user’s
browser in order to track users without the need of client-side stateful iden-
tifiers [10], we wanted to investigate popular, real-world implementations
of fingerprinting and explore their workings. To this end, we analyzed the
fingerprinting libraries of three large, commercial companies: BlueCava21,
Iovation22 and ThreatMetrix23. Two of these companies were chosen due to

21http://www.bluecava.com
22http://www.iovation.com
23http://www.threatmetrix.com

FP7-ICT-2009-5
Project No. 256964

http://www.bluecava.com
http://www.iovation.com
http://www.threatmetrix.com

D4.3: Secure Composition Policies and Server-driven Enforcement 126/158

F
in
ge
rp
ri
nt
in
g
C
at
eg
or
y

P
an

op
ti
cl
ic
k

B
lu
eC

av
a

Io
va
ti
on

R
ep

ut
at
io
nM

an
ag
er

T
hr
ea
tM

et
ri
x

B
ro
ws

er
cu
st
om

iz
at
io
ns

Pl
ug

in
en
um

er
at
io
n (

JS
)

Pl
ug

in
en
um

er
at
io
n (

JS
)

Pl
ug

in
en
um

er
at
io
n (

JS
)

M
im

e-
ty
pe

en
um

er
at
io
n (

JS
)

A
ct
iv
eX

+
53

C
LS

ID
s (J

S)
M
im

e-
ty
pe

en
um

er
at
io
n (

JS
)

A
ct
iv
eX

+
8
C
LS

ID
s (J

S)
G
oo

gl
e
G
ea
rs

D
et
ec
tio

n (
JS

)
A
ct
iv
eX

+
6
C
LS

ID
s (J

S)
Fl
as
h
M
an

uf
ac
tu
re
r (F

LA
SH

)
B
ro
ws

er
-le

ve
lu

se
r
co
nfi

gu
ra
tio

ns
C
oo

ki
es

en
ab

le
d (

H
T

T
P

)
Sy

st
em

/B
ro
w
se
r/
U
se
r
La

ng
ua

ge
(J

S)
Br

ow
se
r
La

ng
ua

ge
(H

T
T

P,
JS

)
Br

ow
se
r
La

ng
ua

ge
(F

LA
SH

)
T
im

ez
on

e (
JS

)
T
im

ez
on

e (
JS

)
T
im

ez
on

e (
JS

)
T
im

ez
on

e (
JS

,F
LA

SH
)

Fl
as
h
en

ab
le
d (

JS
)

Fl
as
h
en

ab
le
d (

JS
)

Fl
as
h
en

ab
le
d (

JS
)

Fl
as
h
en

ab
le
d (

JS
)

D
o-
N
ot
-T
ra
ck

U
se
r
C
ho

ic
e (

JS
)

D
at
e
&

tim
e (

JS
)

Pr
ox
y
D
et
ec
tio

n (
F

LA
SH

)
M
SI
E

Se
cu

rit
y
Po

lic
y (

JS
)

Pr
ox
y
D
et
ec
tio

n (
F

LA
SH

)
B
ro
ws

er
fa
m
ily

&
ve
rs
io
n

U
se
r-
ag

en
t (H

T
T

P
)

U
se
r-
ag
en
t (J

S)
U
se
r-
ag

en
t (H

T
T

P,
JS

)
U
se
r-
ag
en
t (J

S)
A
C
C
EP

T
-H

ea
de

r (H
T

T
P

)
M
at
h
co
ns
ta
nt
s (J

S)
Pa

rt
ia
lS

.C
oo

ki
e
te
st

(J
S)

A
JA

X
Im

pl
em

en
ta
tio

n (
JS

)
O
pe
ra
tin

g
Sy

st
em

&
A
pp

lic
at
io
ns

U
se
r-
ag

en
t (H

T
T

P
)

U
se
r-
ag
en
t (J

S)
U
se
r-
ag

en
t (H

T
T

P,
JS

)
U
se
r-
ag
en
t (J

S)
Fo

nt
D
et
ec
tio

n (
F

LA
SH

,J
AV

A
)

Fo
nt

D
et
ec
tio

n (
JS

,F
LA

SH
)

W
in
do

w
s
R
eg
ist

ry
(S

F
P

)
Fo

nt
D
et
ec
tio

n (
F

LA
SH

)
W

in
do

w
s
R
eg
ist

ry
(S

F
P

)
M
SI
E

Pr
od

uc
t
ke
y (

SF
P

)
O
S+

K
er
ne

lv
er
sio

n (
F

LA
SH

)
H
ar
dw

ar
e
&

N
et
wo

rk
Sc

re
en

R
es
ol
ut
io
n (

JS
)

Sc
re
en

R
es
ol
ut
io
n (

JS
)

Sc
re
en

R
es
ol
ut
io
n (

JS
)

Sc
re
en

R
es
ol
ut
io
n (

JS
,F

LA
SH

)
D
riv

er
En

um
er
at
io
n (

SF
P

)
D
ev
ic
e
Id
en
tifi

er
s (S

F
P

)
IP

A
dd

re
ss

(H
T

T
P

)
T
C
P/

IP
Pa

ra
m
et
er
s (S

F
P

)
T
C
P/

IP
Pa

ra
m
et
er
s (S

F
P

)

Ta
bl
e
10
:
Ta

xo
no

m
y
of

al
lf
ea
tu
re
s
us
ed

by
Pa

no
pt
ic
lic
k
an

d
th
e
st
ud

ie
d
fin

ge
rp
rin

tin
g
pr
ov

id
er
s
-s

ha
de
d
fe
at
ur
es

ar
e,

in
co
m
pa

ris
on

to
Pa

no
pt
ic
lic
k,

ei
th
er

su
ffi
ci
en
tly

ex
te
nd

ed
,o

r
ac
qu

ire
d
th
ro
ug

h
a
di
ffe

re
nt

m
et
ho

d,
or

en
tir

el
y

ne
w

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 127/158

them being mentioned in the web-tracking survey of Mayer and Mitchell [22],
while the third one was chosen due to its high ranking on a popular search
engine. Given the commercial nature of the companies, in order to analyze
the fingerprinting scripts we first needed to discover websites that make use of
them. We used Ghostery [13], a browser-extension which lists known third-
party tracking libraries on websites, to obtain the list of domains which the
three code providers use to serve their fingerprinting scripts. Subsequently,
we crawled popular Internet websites, in search for code inclusions, origi-
nating from these fingerprinting-owned domains. Once these web sites were
discovered, we isolated the fingerprinting code, extracted all individual fea-
tures, and grouped similar features of each company together.

In this section, we present the results of our analysis, in the form of a
taxonomy of possible features that can be acquired through a fingerprinting
library. This taxonomy covers all the features described in Panopticlick [10]
as well as the features used by the three studied fingerprinting companies.
Table 10 lists all our categories and discovered features, together with the
method used to acquire each feature. The categories proposed in our tax-
onomy resulted by viewing a user’s fingerprintable surface as belonging to a
layered system, where the “application layer” is the browser and any finger-
printable in-browser information. At the top of this taxonomy, scripts seek
to fingerprint and identify any browser customizations that the user has di-
rectly or indirectly performed. In lower levels, the scripts target user-specific
information around the browser, the operating system and even the hardware
and network of a user’s machine. In the rest of this section, we focus on all
the non-trivial techniques used by the studied fingerprinting providers that
were not previously described in Eckersley’s Panopticlick [10].

6.1.2 Fingerprinting through popular plugins

As one can see in Table 10, all companies use Flash, in addition to JavaScript,
to fingerprint a user’s environment. Adobe Flash is a proprietary browser
plug-in that has enjoyed wide adoption among users, since it provided ways of
delivering rich media content that could not traditionally be displayed using
HTML. Despite the fact that Flash has been criticized for poor performance,
lack of stability, and that newer technologies, like HTML5, can potentially
deliver what used to be possible only through Flash, it is still available on
the vast majority of desktops.

We were surprised to discover that although Flash reimplements certain
APIs existing in the browser and accessible through JavaScript, its APIs
do not always provide the same results compared to the browser-equivalent
functions. For instance, for a Linux user running Firefox on a 64-bit ma-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 128/158

chine, when querying a browser about the platform of execution, Firefox
reports “Linux x86_64”. Flash, on the other hand, provides the full kernel
version, e.g., Linux 3.2.0-26-generic. This additional information is not only
undesirable from a privacy perspective, but also from a security perspective,
since a malicious web-server could launch an attack tailored not only to a
browser and architecture but to a specific kernel. Another API call that
behaves differently is the one that reports the user’s screen resolution. In
the Linux implementations of the Flash plugin (both Adobe’s and Google’s),
when a user utilizes a dual-monitor setup, Flash reports as the width of a
screen the sum of the two individual screens. This value, when combined
with the browser’s response (which lists the resolution of the monitor were
the browser-window is located), allows a fingerprinting service to detect the
presence of multiple-monitor setups.

Somewhat surprisingly, none of the three studied fingerprinting companies
utilized Java. One of them had some dead code that revealed that in the
past it probably did make use of Java, however, the function was not called
anymore and the applet was no longer present on the hard-coded location
listed in the script. This is an interesting deviation from Panopticlick, which
did use Java as an alternate way of obtaining system fonts. We consider it
likely that the companies abandoned Java due to its low market penetration
in browsers. This, in turn, is most likely caused by the fact that many have
advised the removal of the Java plugin from a user’s browser [5, 17] due to
the plethora of serious Java vulnerabilities that were discovered and exploited
over the last few years.

6.1.3 Vendor-specific fingerprinting

Another significant difference between the code we analyzed and Panopticlick
is that, the fingerprinting companies were not trying to operate in the same
way across all browsers. For instance, when recognizing a browser as Internet
Explorer, they would extensively fingerprint Internet-Explorer-specific prop-
erties, such as navigator.securityPolicy and navigator.systemLanguage.
At the same time, the code accounted for the browser’s “short-comings,”
such as using a lengthy list of predefined CLSIDs for Browser-Helper-Objects
(BHOs) due to Internet Explorer’s unwillingness to enumerate its plugins.

6.1.4 Detection of fonts

The system’s list of fonts can serve as part of a user’s unique fingerprint [10].
While a browser does not directly provide that list, one can acquire it using

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 129/158

either a browser plugin that willingly provides this information or using a
side-channel that indirectly reveals the presence or absence of any given font.

Plugin-based detection ActionScript, the scripting language of Flash,
provides APIs that include methods for discovering the list of fonts installed
on a running system. While this traditionally was meant to be used as a
way of ensuring the correct appearance of text by the plugin, it can also
be used to fingerprint the system. Two out of the three studied companies
were utilizing Flash as a way of discovering which fonts were installed on a
user’s computer. Interestingly, only one of the companies was preserving the
order of the font-list, which points, most likely, to the fact that the other is
unaware that the order of fonts is stable and machine-specific (and can thus
be used as an extra fingerprinting feature).

1 function get_text_dimensions (font){
2
3 h = document . getElementsByTagName ("BODY")[0];
4 d = document . createElement ("DIV");
5 s = document . createElement ("SPAN");
6
7 d. appendChild (s);
8 d.style. fontFamily = font;
9 s.style. fontFamily = font;
10 s.style. fontSize = "72px";
11 s. innerHTML = " font_detection ";
12 h. appendChild (d);
13
14 textWidth = s. offsetWidth ;
15 textHeight = s. offsetHeight ;
16 h. removeChild (d);
17
18 return [textWidth , textHeight];
19 }

Listing 10: Side-channel inference of the presence or absence of a font

Side-channel inference The JavaScript code of one of the three finger-
printing companies included a fall-back method for font-detection, in the
cases where the Flash plugin was unavailable. By analyzing that method,
we discovered that they were using a technique, similar to the CSS history
stealing technique [14], to identify the presence or absence of any given font
- see Listing 10.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 130/158

Font Family String Width x Height

Sans font_detection 519x84

Arial font_detection 452x83

Calibri font_detection 416x83

Figure 19: The same string, rendered with different fonts, and its effects on
the string’s width and height, as reported by the Google Chrome browser

More precisely, the code first creates a <div> element. Inside this element,
the code then creates a element with a predetermined text string and
size, using a provided font family. Using the offsetWidth and offsetHeight
methods of HTML elements, the script discovers the layout width and height
of the element. This code is first called with a “sans” parameter, the font
typically used by browsers as a fall-back, when another requested font is
unavailable on a user’s system. Once the height and text for “sans” are
discovered, another script goes over a predefined list of fonts, calling the
get_text_dimensions function for each one. For any given font, if the
current width or height values are different from the ones obtained through
the original “sans” measurement, this means that the font does exist and
was used to render the predefined text. The text and its size are always kept
constant, so that if its width or height change, this change will only be due
to the different font. Figure 19 shows three renderings of the same text, with
the same font-size but different font faces in Google Chrome. In order to
capitalize as much as possible on small differences between fonts, the font-
size is always large, so that even the smallest of details in each individual
letter will add up to measurable total difference in the text’s height and
width. If the height and width are identical to the original measurement, this
means that the requested font did not exist on the current system and thus,
the browser has selected the sans fall-back font. All of the above process,
happens in an invisible iframe created and controlled by the fingerprinting
script and thus completely hidden from the user.

Using this method, a fingerprinting script can rapidly discover, even for
a long list of fonts, those that are present on the operating system. The
downside of this approach is that less popular fonts may not be detected,
and that the font-order is no longer a fingerprintable feature.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 131/158

6.1.5 Detection of HTTP Proxies

One of the features that are the hardest to spoof for a client is its IP address.
Given the nature of the TCP protocol, a host cannot pretend to be listening
at an IP address from which it cannot reliably send and receive packets.
Thus, to hide a user’s IP address, another networked machine (a proxy) is
typically employed that relays packets between the user that wishes to remain
hidden and a third-party. In the context of browsers, the most common type
of proxies are HTTP proxies, through which users configure their browsers
to send all requests. In addition to manual configuration, browser plugins
are also available that allow for a more controlled use of remote proxies, such
as the automatic routing of different requests to different proxies based on
pattern matching of each request24, or the cycling of proxies from a proxy
list at user-defined intervals25.

From the point of view of device identification through fingerprinting, a
specific IP address is an important feature. Assuming the use of fingerprint-
ing for the detection of fraudulent activities, the distinction between a user
who is situated in a specific country and one that pretends to be situated in
that country, is crucial. Thus, it is in the interest of the fingerprint provider
to detect a user’s real IP address or, at least, discover that the user is utilizing
a proxy server.

When analyzing the ActionScript code embedded in the SWF files of two
of the three fingerprinting companies, we found evidence that the code was
circumventing the user-set proxies at the level of the browser, i.e., the loaded
Flash application was contacting a remote host directly, disregarding any
browser-set HTTP proxies. We verified this behavior by employing both an
HTTP proxy and a packet-capturing application, and noticing that certain
requests were captured by the latter but were never received by the former. In
the code of both of the fingerprinting companies, certain long alphanumerical
tokens were exchanged between JavaScript and Flash and then used in their
communication to the server. While we do not have access to the server-
side code of the fingerprinting providers, we assume that the identifiers are
used to correlate two possibly different IP addresses. In essence, as shown in
Figure 20, if a JavaScript-originating request contains the same token as a
Flash-originating request from a different source IP address, the server can
be certain that the user is utilizing an HTTP proxy.

Flash’s ability to circumvent HTTP proxies is a somewhat known issue
among privacy-conscious users that has lead to the disabling of Flash in
anonymity-providing applications, like TorButton [35]. Our analysis shows

24FoxyProxy - http://getfoxyproxy.org/
25ProxySwitcher - http://www.proxyswitcher.com/

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 132/158

 http://www.example.com

 Proxy
Server

Fingerprinting
server

token

token

token

SWF JS

Figure 20: Fingerprinting libraries take advantage of Flash’s ability to ignore
browser-defined HTTP proxies to detect the real IP address of a user

that it is actively exploited to identify and bypass web proxies.

6.1.6 System-fingerprinting plugins

Previous research on fingerprinting a user’s browser focused on the use of
popular browser plugins, such as Flash and Java, and utilized as much of their
API surface as possible to obtain user-specific data [21, 10]. However, while
analyzing the plugin-detection code of the studied fingerprinting providers,
we noticed that two out of the three were searching a user’s browser for
the presence of a special plugin, which, if detected, would be loaded and
then invoked. We were able to identify that the plugins were essentially
native fingerprinting libraries, which are distributed as CAB files for Internet
Explorer and eventually load as DLLs inside the browser. These plugins can
reach a user’s system, either by a user accepting their installation through an
ActiveX dialogue, or bundled with applications that users download on their
machines. DLLs are triggered by JavaScript through ActiveX, but they run
natively on the user’s machine, and thus can gather as much information as
the Internet Explorer process.

We downloaded both plugins, wrapped each DLL into an executable that
simply hands-off control to the main routine in the DLL and submitted both
executables to Anubis [4], a dynamic malware analysis platform that exe-
cutes submitted binaries in a controlled environment. We focused on the
Windows registry values that were read by the plugin, since the registry is a

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 133/158

rich environment for fingerprinting. The submitted fingerprinting DLLs were
reading a plethora of system-specific values, such as the hard disk’s identi-
fier, TCP/IP parameters, the computer’s name, Internet Explorer’s product
identifier, the installation date of Windows, the Windows Digital Product Id
and the installed system drivers – entries marked with SFP in Table 10.

All of these values combined provide a much stronger fingerprint than
what JavaScript or Flash could ever construct. It is also worthwhile men-
tioning that one of the two plugins was misleadingly identifying itself as
“ReputationShield” when asking the user whether she wants to accept its in-
stallation. Moreover, none of 44 antivirus engines of VirusTotal [38] identified
the two DLLs as malicious, even though they clearly belong to the spyware
category. Using identifiers found within one DLL, we were also able to lo-
cate a Patent Application for Iovation’s fingerprinting plugin that provides
further information on the fingerprinting process and the gathered data [29].

6.1.7 Fingerprint Delivery Mechanism

In the fingerprinting experiments of Mayer [21] and Eckersley [10], there was
a 1-to-1 relationship between the page conducting the fingerprinting and the
backend storing the results. For commercial fingerprinting, however, there
is a N-to-1 relationship, since each company provides fingerprinting services
to many websites (through the inclusion of third-party scripts) and needs
to obtain user fingerprints from each of these sites. Thus, the way that the
fingerprint and the information about it are delivered is inherently different
from the two aforementioned experiments.

Through our code analysis, we found two different scenarios of finger-
printing. In the first scenario, the first-party site was not involved in the fin-
gerprinting process. The fingerprinting code was delivered by an advertising
syndicator, and the resulting fingerprint was sent back to the fingerprinting
company. This was most likely done to combat click-fraud, and it is unclear
whether the first-party site is even aware of the fact that its users are being
fingerprinted.

In the second scenario, where the first-party website is the one requesting
the fingerprint, we saw that two out of the three companies were adding the
final fingerprint of the user into the DOM of the hosting page. For instance,
www.imvu.com is using BlueCava for device fingerprinting by including re-
mote scripts hosted on BlueCava’s servers. When BlueCava’s scripts combine
all features into a single fingerprint, the fingerprint is DES-encrypted (DES
keys generated on the fly and then encrypted with a public key), concate-
nated with the encrypted keys and finally converted to Base64 encoding.
The resulting string is added into the DOM of www.imvu.com; more pre-

FP7-ICT-2009-5
Project No. 256964

www.imvu.com
www.imvu.com

D4.3: Secure Composition Policies and Server-driven Enforcement 134/158

cisely, as a new hidden input element in IMVU’s login form. In this way,
when the user submits her username and password, the fingerprint is also
sent to IMVU’s web servers. Note, however, that IMVU cannot decrypt the
fingerprint and must thus submit it back to BlueCava, which will then reply
with a “trustworthiness” score and other device information. This architec-
ture allows BlueCava to hide the implementation details from its clients and
to correlate user profiles across its entire client-base. Iovation’s fingerprinting
scripts operate in a similar manner.

Contrastingly, ThreatMetrix delivers information about users in a dif-
ferent way. The including site, i.e., a customer of ThreatMetrix, creates a
session identifier that it places into a <div> element with a predefined iden-
tifier. ThreatMetrix’s scripts, upon loading, read this session identifier and
append it to all requests towards the ThreatMetrix servers. This means that
the including site never gets access to a user’s fingerprint, but only informa-
tion about the user by querying ThreatMetrix for specific session identifiers.

6.1.8 Analysis Limitations

In the previous sections we analyzed the workings of the fingerprinting li-
braries of three popular commercial companies. The analysis was a mostly
manual, time-consuming process, where each piece of code was gradually
deobfuscated until the purpose of all functions was clear. Given the time
required to fully reverse-engineer each library, we had to limit ourselves to
analyze the script of each fingerprinting company as it was seen through two
different sites (that is, two different clients of each company). However, we
cannot exclude the possibility of additional scripts that are present on the
companies’ web servers that would perform more operations than the ones
we encountered.

6.2 Adoption of fingerprinting
In Section 6.1.1, we analyzed the workings of three commercial fingerprint-
ing companies and focused on the differences of their implementations when
compared to Panopticlick [10]. In this section, we study the fingerprinting
ecosystem, from the point of view of websites that leverage fingerprinting.

6.2.1 Adoption on the popular web

To quantify the use of web-based fingerprinting on popular websites, we
crawled up to 20 pages for each of the Alexa top 10,000 sites, searching for
script inclusions and iframes originating from the domains that the three

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 135/158

studied companies utilize to serve their fingerprinting code. To categorize
the discovered domains, we made use of the publicly-available domain cate-
gorization service of TrendMicro 26, a popular anti-virus vendor.

Through this process, we discovered 40 sites (0.4% of the Alexa top
10,000) utilizing fingerprinting code from the three commercial providers.
The most popular site making use of fingerprinting is skype.com, while the
two most popular categories of sites are: “Pornography” (15%) and “Per-
sonals/Dating” (12.5%). For pornographic sites, a reasonable explanation
is that fingerprinting is used to detect shared or stolen credentials of pay-
ing members, while for dating sites to ensure that attackers do not create
multiple profiles for social-engineering purposes. Our findings show that fin-
gerprinting is already part of some of the most popular sites of the Internet,
and thus the hundreds of thousands of their visitors are fingerprinted on a
daily basis.

Note that the aforementioned adoption numbers are lower bounds since
our results do not include pages of the 10,000 sites that were not crawled,
either because they were behind a registration wall, or because they were
not in the set of 20 URLs for each crawled website. Moreover, some popular
sites may be using their own fingerprinting algorithms for performing device
identification and not rely on the three studied fingerprinting companies.

6.2.2 Adoption by other sites

To discover less popular sites making use of fingerprinting, we used a list of
3,804 domains of sites that, when analyzed by Wepawet [8], requested the
previously identified fingerprinting scripts.

Each domain was submitted to TrendMicro’s and McAfee’s categoriza-
tion services 27 which provided as output the domain’s category and “safety”
score. We used two categorizing services in an effort to reduce, as much
as possible, the number of “untested” results, i.e., the number of websites
not analyzed and not categorized. By examining the results, we extracted
as many popular categories as possible and created aliases for names that
were referring to the same category, such as “News / Media” versus “Gen-
eral News” and “Disease Vector” versus “Malicious Site”. If a domain was
characterized as “dangerous” by one, and “not dangerous” by the other, we
accepted the categorization of the latter, so as to give the benefit of the doubt
to legitimate websites that could have been compromised, when the former
service categorized it.

26TrendMicro - http://global.sitesafety.trendmicro.com/
27McAfee -http://mcafee.com/threat-intelligence/domain/

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 136/158

Spam

Malicious Sites

Adult / Mature Content

Computers / Internet

Dating / Personals

Entertainment

Business / Economy

Internet Services

Travel

Shopping

0 200 400 600 800 1000

Number of sites

C
a

te
g

o
ry

Figure 21: The top 10 categories of websites utilizing fingerprinting

Given the use of two domain-categorization services, a small number of
domains (7.9%) was assigned conflicting categories, such as “Dating” ver-
sus “Adult/Mature” and “Business/Economy” versus “Software/Hardware.”
For these domains, we accepted the characterization of McAfee, which we
observed to be more precise than TrendMicro’s for less popular domains.
Excluding 40.8% of domains which were reported as “untested” by both ser-
vices, the results of this categorization are shown in Figure 21.

First, one can observe that eight out of the ten categories, include sites
which operate with user subscriptions, many of which contain personal and
possibly financial information. These sites are usually interested in identify-
ing fraudulent activities and the hijacking of user accounts. The Adult/Ma-
ture category seems to make the most use of fingerprinting as was the case
with the Alexa top 10,000 sites.

The top two categories are also the ones that were the least expected. 163
websites were identified as malicious, such as using exploits for vulnerable
browsers, conducting phishing attacks or extracting private data from users,
whereas 1,063 sites were categorized as “Spam” by the two categorizing en-
gines. By visiting some sites belonging to these categories, we noticed that
many of them are parked webpages, i.e., they do not hold any content except
advertising the availability of the domain name, and thus do not currently
include fingerprinting code. We were however able to locate many “quiz/sur-
vey” sites that are, at the time of this writing, including fingerprinting code
from one of the three studied companies. Visitors of these sites are greeted
with a “Congratulations” message, which informs them that they have won
and asks them to proceed to receive their prize. At some later step, these sites
extract a user’s personal details and try to subscribe the user to expensive

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 137/158

mobile services.
While our data-set is inherently skewed towards “maliciousness” due to

its source, it is important to point out that all of these sites were found to
include, at some point in time, fingerprinting code provided by the three
studied providers. This observation, coupled with the fact that for all three
companies, an interested client must set an appointment with a sales repre-
sentative in order to acquire fingerprinting services, point to the possibility
of fingerprinting companies working together with sites of dubious nature,
possibly for the expansion of their fingerprint databases and the acquisition
of more user data.

6.3 Fingerprinting the behavior of special objects
In Section 6.1.1, we studied how commercial companies perform their fin-
gerprinting and created a taxonomy of fingerprintable information accessi-
ble through a user’s browser. In Table 10, one can notice that, while fin-
gerprinting companies go to great lengths to discover information about a
browser’s plugins and the machine hosting the browser, they mostly rely
on the browser to willingly reveal its true identity (as revealed through
the navigator.userAgent property and the User-Agent HTTP header). A
browser’s user-agent is an important part of a system’s fingerprint [42], and
thus it may seem reasonable to assume that if users modify these default
values, they will increase their privacy by hiding more effectively from these
companies.

In this section, however, we demonstrate how fragile the browser ecosys-
tem is against fingerprinting. Fundamental design choices and differences
between browser types are used in an effort to show how difficult it can be
to limit the exposure of a browser to fingerprinting. Even different versions
of the same browser can have differences in the scripting environment that
identify the browser’s real family, version, and, occasionally, even the oper-
ating system. In the rest of this section we describe several novel browser-
identifying techniques that: a) can complement current fingerprinting, and
b) are difficult to eliminate given the current architecture of web browsers.

6.3.1 Experimental Fingerprinting Setup

Our novel fingerprinting techniques focus on the special, browser-populated
JavaScript objects; more precisely, the navigator and screen objects. Con-
trary to objects created and queried by a page’s JavaScript code, these objects
contain vendor- and environment-specific methods and properties, and are
thus the best candidates for uncovering vendor-specific behaviors.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 138/158

To identify differences between browser-vendors and to explore whether
these differences are consistent among installations of the same browser on
multiple systems, we constructed a fingerprinting script that performed a
series of “everyday” operations on these two special objects (such as adding
a new property to an object, or modifying an existing one) and reported
the results to a server. In this and the following section, we describe the
operations of our fingerprinting script and our results. Our constructed page
included a JavaScript program that performed the following operations:

1. Enumerated the navigator and screen object, i.e., request the listing
of all properties of the aforementioned objects.

2. Enumerated the navigator object again, to ensure that the order of
enumeration does not change.

3. Created a custom object, populated it, and enumerated it. A cus-
tom, JavaScript-created object, allows us to compare the behavior of
browser-populated objects (such as navigator) with the behavior of
“classic” JavaScript objects.

4. Attempted to delete a property of the navigator object, the screen
object, and the custom object.

5. Add the possibly-deleted properties back to their objects.

6. Attempted to modify an existing property of the navigator and screen
objects.

7. If Object.defineProperty is implemented in the current browser, uti-
lize it to make an existing property in the navigator, screen, and
custom object non-enumerable.

8. Attempt to delete the navigator and screen objects.

9. Attempt to assign new custom objects to the navigator and screen
variable names.

At each step, the objects involved were re-enumerated, and the resulting
data was Base64-encoded and sent to our server for later processing. Thus, at
the server side, we could detect whether a property was deleted or modified,
by comparing the results of the original enumeration with the current one.
The enumeration of each object was conducted through code that made use
of the prop in obj construct, to avoid forcing a specific order of enumeration
of the objects, allowing the engine to list object properties in the way of its
choosing.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 139/158

6.3.2 Results

By sharing the link to our fingerprinting site with friends and colleagues, we
were able, within a week, to gather data from 68 different browsers installa-
tions, of popular browsers on all modern operating systems. While our data
is small in comparison to previous studies [21, 10], we are not using it to
draw conclusions that have statistical relevance but rather, as explained in
the following sections, to find deviations between browsers and to establish
the consistency of these deviations. We were able to identify the following
novel ways of distinguishing between browsers:

Order of enumeration Through the analysis of the output from the first
three steps of our fingerprinting algorithm (Sec. 6.3.1), we discovered that the
order of property-enumeration of special browser objects, like the navigator
and screen objects, is consistently different between browser families, ver-
sions of each browser, and, in some cases, among deployments of the same
version on different operating systems. While in the rest of this section we
focus to the navigator object, the same principles apply to the screen ob-
ject.

Our analysis was conducted in the following manner. After grouping the
navigator objects and their enumerated properties based on browser fam-
ilies, we located the navigator object with the least number of properties.
This version was consistently belonging to the oldest version of a browser,
since newer versions add new properties which correspond to new browser
features, such as the navigator.doNotTrack property in the newer versions
of Mozilla Firefox. The order of the properties of this object, became our
baseline to which we compared the navigator objects of all subsequent ver-
sions of the same browser family. To account for ordering changes due to the
introduction of new properties in the navigator object, we simply excluded
all properties that were not part of our original baseline object, without how-
ever changing the relative order of the rest of the properties. For instance,
assume an ordered set of features B, where B0 = {a, b, c, d} and B1 = {a, b,
e, c, d, f}. B1 has two new elements in comparison with B0, namely e and f
which, however, can be removed from the set without disrupting the relative
order of the rest. For every browser version within the same browser-family,
we compared the navigator object to the baseline, by first recording and
removing new features and then noting whether the order of the remaining
features was different from the order of the baseline.

The results of this procedure are summarized in Table 11. For each
browser family, we compare the ordering of the navigator object among up

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 140/158

Browser Vc-4 Vc-3 Vc-2 Vc-1 Vc
Mozilla Firefox W W+1 W+4 W+5 W+7
Microsoft IE - - X X X+1
Opera Y Y+1 Y+1 Y+3 Y+5
Google Chrome Z Z Z′+1 Z′′+1 Z′′′+1

Table 11: Differences in the order of navigator objects between versions of
the same browser

to five different versions. The most current version is denoted as Vc. The
first observation is that in almost 20 versions of browsers, no two were ever
sharing the same order of properties in the navigator object. This feature
by itself, is sufficient to categorize a browser to its correct family, regard-
less of any property-spoofing that the browser may be employing. Second,
all browsers except Chrome maintain the ordering of navigator elements
between versions. Even when new properties were introduced, these do not
alter the relative order of all other properties. For instance, even though the
newest version of Mozilla Firefox (Vc) has 7 extra features when compared
to the oldest version (Vc-4), if we ignore these features then the ordering is
the same with the original ordering (W).

Google Chrome was the only browser that did not exhibit this behav-
ior. By analyzing our dataset, we discovered that Chrome not only changed
the order between subsequent versions of the browser, but also between de-
ployments of the same browser on different operating systems. For instance,
Google Chrome v.20.0.1132.57 installed on Mac OSX has a different order
of elements than the same version installed on a Linux operating system. In
Table 11, we compare the order of properties of the navigator object when
the underlying OS is Windows XP. While this changing order may initially
appear to be less-problematic than the stable order of other browsers, in re-
ality, the different orderings can be leveraged to detect a specific version of
Google Chrome, and, in addition, the operating system on which the browser
is running.

Overall, we discovered that the property ordering of special objects, such
as the navigator object, is consistent among runs of the same browser and
runs of the same version of browsers on different operating systems. Con-
trastingly, the order of properties of a custom script-created object (Step 3
in Section 6.3.1) was identical among all the studied browsers even though,
according to the ECMAScript specification, objects are unordered collections
of properties [11] and thus the exact ordering can be implementation-specific.
More precisely, the property ordering of the custom objects was always the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 141/158

Browser Unique methods & properties

Mozilla Firefox

screen.mozBrightness
screen.mozEnabled
navigator.mozSms

+ 10

Google Chrome navigator.webkitStartActivity
navigator.getStorageUpdates

Opera navigator.browserLanguage
navigator.getUserMedia

Microsoft IE

screen.logicalXDPI
screen.fontSmoothingEnabled

navigator.appMinorVersion
+11

Table 12: Unique methods and properties of the navigator and screen
objects of the four major browser-families

same with the order of property creation.
In general, the browser-specific, distinct property ordering of special ob-

jects can be directly used to create models of browsers and, thus, unmask the
real identity of a browser. Our findings are in par with the “order-matters”
observation made by previous research: Mayer discovered that the list of
plugins as reported by browsers was ordered based on the installation time
of each individual plugin [21]. Eckersley noticed that the list of fonts, as
reported by Adobe Flash and Sun’s Java VM, remained stable across visits
of the same user [10].

Unique features During the first browser wars in the mid-90s, browser
vendors were constantly adding new features to their products, with the
hope that developers would start using them. As a result, users would have
to use a specific browser, effectively creating a browser lock-in [43]. The
features ranged from new HTML tags to embedded scripting languages and
third-party plugins. Signs of this “browser battle” are still visible in the
contents of the user-agent string of modern browsers [3].

Today, even though the HTML standard is governed by the W3C com-
mittee and JavaScript by Ecma International, browser vendors still add new
features that do not belong to any specific standard. While these features
can be leveraged by web developers to provide users with a richer experi-
ence, they can also be used to differentiate a browser from another. Using

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 142/158

the data gathered by our fingerprinting script, we isolated features that were
available in only one family of browsers, but not in any other. These unique
features are summarized in Table 12. All browser families had at least two
such features that were not shared by any other browser. In many cases, the
names of the new features were starting with a vendor-specific prefix, such as
screen.mozBrightness for Mozilla Firefox and navigator.msDoNotTrack
for Microsoft Internet Explorer. This is because browser-vendors are typ-
ically allowed to use prefixes for features not belonging to a standard or
not yet standardized [39]. In the context of fingerprinting, a script can
query for the presence or absence of these unique features (e.g., typeof
screen.mozBrightness != “undefined”) to be certain of the identity of any
given browser.

An interesting side note is that these unique features can be used to ex-
pose the real version of Mozilla Firefox browser, even when the user is using
the Torbutton extension. Torbutton replaces the navigator and screen ob-
jects with its own versions, spoofing the values of certain properties, so as to
protect the privacy of the user [9]. We installed Torbutton on Mozilla Fire-
fox version 14 and, by enumerating the navigator object, we observed that,
among others, the Torbutton had replaced the navigator.userAgent prop-
erty with the equivalent of Mozilla Firefox version 10, and it was claiming
that our platform was Windows instead of Linux. At the same time, however,
special Firefox-specific properties that Mozilla introduced in versions 11 to
14 of Firefox (such as navigator.mozBattery and navigator.mozSms) were
still available in the navigator object. These discrepancies, combined with
other weaknesses found in less thorough user-agent-spoofing extensions (see
Section 6.4), can uncover not only that the user is trying to hide, but also
that she is using Torbutton to do so.

Mutability of special objects In the two previous sections, we discussed
the ability to exploit the enumeration-order and unique features of browsers
for fingerprinting. In this section, we investigate whether each browser treats
the navigator and screen objects like regular JavaScript objects. More
precisely, we investigate whether these objects are mutable, i.e., whether a
script can delete a specific property from them, replace a property with a new
one, or delete the whole object. By comparing the outputs of steps four to
nine from our fingerprinting algorithm, we made the following observations.

Among the four browser families, only Google Chrome allows a script to
delete a property from the navigator object. In all other cases, while the
“delete” call returns successfully and no exceptions are thrown, the prop-

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 143/158

erties remain present in the special object. When our script attempted to
modify the value of a property of navigator, Google Chrome and Opera
allowed it, while Mozilla Firefox and Internet Explorer ignored the request.
In the same way, these two families were the only ones allowing a script to
reassign navigator and screen to new objects. Interestingly, no browser
allowed the script to simply delete the navigator or screen object. Finally,
Mozilla Firefox behaved in a unique way when requested to make a certain
property of the navigator object non-enumerable. Specifically, instead of
just hiding the property, Firefox behaved as if it had actually deleted it, i.e.,
it was no longer accessible even when requested by name.

Evolution of functionality Recently, we have seen a tremendous innova-
tion in Web technologies. The competition is fierce in the browsers’ scene,
and vendors are trying hard to adopt new technologies and provide a bet-
ter platform for web applications. Based on that observation, in this sec-
tion, we examine if we can determine a browser’s version based on the new
functionality that it introduces. We chose Google Chrome as our testing
browser and created a library in JavaScript that tests if specific functionality
is implemented by the browser. The features that we selected to capture dif-
ferent functionality were inspired by web design compatibility tests (where
web developers verify if their web application is compatible with a specific
browser). In total, we chose 187 features to test in 202 different versions of
Google Chrome, spanning from version 1.0.154.59 up to 22.0.1229.8, which
we downloaded from oldapps.com and which covered all 22 major versions
of Chrome. We found that not all of the 187 features were useful; only 109
actually changed during Google Chrome’s evolution. These browser versions
covered not only releases from the stable channel of Google Chrome, but
also from Beta and Dev channels. We refer to a major version as the first
number of Google Chrome’s versioning system, and to minor version as the
full number of the version. We used a virtual machine with Windows XP
to setup all browser versions, and used all versions to visit our functionality-
fingerprinting page.

In total, we found 71 sets of features that can be used to identify a
specific version of Google Chrome. Each feature set could identify versions
that range from a single Google Chrome version up to 14 different versions.
The 14 Chrome versions that were sharing the same feature set were all part
of the 12.0.742.* releases. Among all 71 sets, there were only four cases
where the same feature set was identifying more than a single major version
of the browser. In all of these cases, the features overlapped with the first

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 144/158

distinguishable feature sets minor versions

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

0

7

14

21

28

Figure 22: A comparison between how many distinguishable feature sets and
minor Google Chrome versions we have per Google Chrome’s major versions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

cs
ss
cr
ol
lb
ar

au
di
o

sa
nd
bo
x

sc
ri
pt
as
yn
c

pe
rf
or
m
an
ce

fil
es
ys
te
m

ou
tp
ut
el
em

da
ta
vi
ew

bg
si
ze
co
ve
r

cs
st
ra
ns
fo
rm
s3
d

de
ta
ils

w
eb
au
di
o

w
eb
so
ck
et
sb
in
ar
y

cu
bi
cb
ez
ie
rr
an
ge

re
gi
on
s

cs
sfi
lt
er
s

ov
er
flo
w
sc
ro
lli
ng

st
ri
ct
m
od
e

sr
cd
oc

se
am

le
ss

ga
m
ep
ad
s

Figure 23: Feature-based fingerprinting to distinguish between Google
Chrome major versions

Dev release of the next major version, while subsequent releases from that
point on had different features implemented. In Figure 22, we show how
many minor versions of Chrome we examined per major version and how
many distinct feature sets we found for each major version. The results show
that we can not only identify the major version, but in most cases, we have
several different feature sets on the same major version. This makes the
identification of the exact browser version even more fine-grained.

In Figure 23, we show how one can distinguish all Google Chrome’s major
versions by checking for specific features. Every pair of major versions is sep-
arated by a feature that was introduced into the newer version and did not
exist in the previous one. Thus, if anyone wants to distinguish between two
consecutive versions, a check of a single feature is sufficient to do so. Notice
that our results indicate that we can perform even more fine-grained version

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 145/158

detection than the major version of Google Chrome (we had 71 distinct sets
of enabled features compared to 22 versions of Chrome), but for simplicity
we examined only the major version feature changes in detail.

Miscellaneous In this section, we list additional browser-specific behaviors
that were uncovered through our experiment but that do not fall in the
previous categories.

Our enumeration of object-properties indirectly uses the method toString()
for the examined objects. By comparing the formatted output of some spe-
cific properties and methods, we noticed that different browsers treated them
in slightly different ways. For instance, when calling toString() on the na-
tively implemented navigator.javaEnabled method, browsers simply state
that it is a “native function.” Although all the examined browser fami-
lies print “function javaEnabled() { [native code] },” Firefox uses newline
characters after the opening curly-bracket and before the closing one. Inter-
estingly, Internet Explorer does not list the navigator.javaEnabled when
requested to enumerate the navigator object, but still provides the “native
function” print-out when asked specifically about the javaEnabled method.
In the same spirit, when our scripts invoked the toString() method on the
navigator.plugins object, Google Chrome reported “[object DOMPlugi-
nArray],” Internet Explorer reported “[object],” while both Mozilla Firefox
and Opera reported “[object PluginArray].”

Lastly, while trying out our fingerprinting page with various browsers, we
discovered that Internet Explorer lacks native support for Base64 encoding
and decoding (atob and btoa, respectively) which our script used to encode
data before sending them to the server.

6.3.3 Summary

Overall, one can see how various implementation choices, either major ones,
such as the traversal algorithms for JavaScript objects and the development
of new features, or minor ones, such as the presence or absence of a newline
character, can reveal the true nature of a browser and its JavaScript engine.

6.4 Analysis of User-Agent-Spoofing Extensions
With the advent of browser add-ons, many developers have created extensions
that can increase the security of users (e.g., extensions showing HTML forms
with non-secure destinations) or their privacy (e.g., blocking known ads and
web-tracking scripts).

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 146/158

Extension #Installations User Rating
Mozilla Firefox

UserAgent Switcher 604,349 4/5
UserAgent RG 23,245 4/5
UAControl 11,044 4/5
UserAgentUpdater 5,648 3/5
Masking Agent 2,262 4/5
User Agent Quick Switch 2,157 5/5
randomUserAgent 1,657 4/5
Override User Agent 1,138 3/5

Google Chrome
User-Agent Switcher for Chrome 123,133 4/5
User-Agent Switcher 21,108 3.5/5
Ultimate User Agent Switcher, URL sniffer 28,623 4/5

Table 13: List of user-agent-spoofing browser extensions

In the context of this paper, we were interested in studying the com-
pleteness and robustness of extensions that attempt to hide the true nature
of a browser from an inspecting website. As shown in Table 10, while the
studied companies do attempt to fingerprint a user’s browser customizations,
they currently focus only on browser-plugins and do not attempt to discover
any installed browser-extensions. Given however the sustained popularity of
browser-extensions [31], we consider it likely that fingerprinting extensions
will be the logical next step. Note that, unlike browser plugins, extensions are
not enumerable through JavaScript and, thus, can only be detected through
their side-effects. For instance, some sites currently detect the use of Adblock
Plus [2] by searching for the absence of specific iframes and DOM elements
that are normally created by advertising scripts.

Since a browser exposes its identity through the user-agent field (avail-
able both as an HTTP header and as a property of the JavaScript-accessible
navigator object), we focused on extensions that advertised themselves as
capable of spoofing a browser’s user agent. These extensions usually serve
two purposes. First, they allow users to surf to websites that impose strict
browser requirements onto their visitors, without fulfilling these require-
ments. For instance, some sites are developed and tested using one specific
browser and, due to the importance of the content loading correctly, refuse
to load on other browsers. Using a user-agent-spoofing extension, a user can
visit such a site, by pretending to use one of the white-listed browsers.

Another reason for using these extensions is to protect the privacy of a

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 147/158

Google Chrome Mozilla Firefox MSIE Opera
navigator.product Gecko Gecko N/A N/A
navigator.appCodeName Mozilla Mozilla Mozilla Mozilla
navigator.appName Netscape Netscape Microsoft Inter-

net Explorer
Opera

navigator.platform Linux i686 Linux x86_64 Win32 Linux
navigator.vendor Google Inc. (empty string) N/A N/A

Table 14: Standard properties of the navigator object and their values across
different browser families

user. Eckeresly, while gathering data for the Panopticlick project, discovered
that there were users whose browsers were reporting impossible configura-
tions, for instance, a device was pretending to be an iPhone, but at the same
time had Adobe Flash support. In that case, these were users who were ob-
viously trying to get a non-unique browser fingerprint by Panopticlick. Since
Eckersley’s study showed the viability of using common browser features
as parts of a unique fingerprint, it is reasonable to expect that legitimate
users utilize such extensions to reduce the trackability of their online activ-
ities, even if the extensions’ authors never anticipated such a use. Recently,
Trusteer discovered in an “underground” forum a spoofing-guide that pro-
vided step-by-step instructions for cybercriminals who wished to fool fraud-
detection mechanisms that used device-fingerprinting [15]. Among other ad-
vice, the reader was instructed to download an extension that changes the
User-Agent of their browser to make their sessions appear as if they were
originating by different computers with different browsers and operating sys-
tems.

Table 13 shows the Mozilla Firefox and Google Chrome extensions that we
downloaded and tested, together with their user base (measured in July 2012)
and the rating that their users had provided. The extensions were discovered
by visiting each market, searching for “user-agent” and then downloading all
the relevant extensions with a sufficiently large user base and an above-
average rating. A high rating is important because it indicates the user’s
satisfaction in the extension fulfilling its purpose. Our testing consisted of
listing the navigator and screen objects through JavaScript and inspecting
the HTTP headers sent with browser requests, while the extensions were
actively spoofing the identity of the browser. As in Section 6.3, we chose to
focus on these two objects since they are the ones that are the most vendor-
specific as well as the most probed by the fingerprinting libraries. Through
our analysis, we discovered that, unfortunately, in all cases, the extensions

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 148/158

were inadequately hiding the real identity of the browser, which could still be
straightforwardly exposed through JavaScript. Apart from being vulnerable
to every fingerprinting technique that we introduced in Section 6.3, each
extension had one or more of the following issues:

• Incomplete coverage of the navigator object. In many cases,
while an extension was modifying the navigator.userAgent property,
it would leave intact other revealing properties of the navigator object,
such as appName, appVersion and vendor - Table 14. Moreover, the
extensions usually left the navigator.platform property intact, which
allowed for improbable scenarios, like a Microsoft Internet Explorer
browser running on Linux.

• Impossible configurations. None of the studied extensions attempted
to alter the screen object. Thus, users who were utilizing laptops or
normal workstations and pretended to be mobile devices, were report-
ing impossible screen width and height (e.g., a reported 1920x1080
resolution for an iPhone).

• Mismatch between User-agent values. As discussed earlier, the
user-agent of any given browser is accessible through the HTTP head-
ers of a browser request and through the userAgent property of the
navigator object. We found that some extensions would change the
HTTP headers of the browser, but not of the navigator object. Two
out of three Chrome extensions were presenting this behavior.

We want to stress that these extensions are not malicious in nature. They
are legitimately-written software that unfortunately did not account for all
possible ways of discovering the true identity of the browsers on which they
are installed. The downside here is that, not only fingerprinting libraries
can potentially detect the actual identity of a browser, thus, undermining
the goals of the extension, but also that they can discover the discrepancies
between the values reported by the extensions and the values reported by the
browser, and then use these differences as extra features of their fingerprints.
The discrepancies of each specific extension can be modeled and thus, as with
Adblock Plus, used to uncover the presence of specific extensions, through
their side-effects.

The presence of any user-agent-spoofing extension is a discriminatory
feature, under the assumption that the majority of browsing users are not
familiar enough with privacy threats (with the possible exception of cookies)
to install such spoofing extensions. As a rough metric, consider that the
most popular extension for Mozilla Firefox is Adblock Plus [2] that, at the

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 149/158

time of this writing, is installed by fifteen million users, 25 times more users
than UserAgent Switcher, the most popular extension in Table 13.

We characterize the extension-problem as an iatrogenic 28 one. The users
who install these extensions in an effort to hide themselves in a crowd of
popular browsers, install software that actually makes them more visible and
more distinguishable from the rest of the users, who are using their browsers
without modifications. As a result, we advice against the use of user-agent-
spoofing extensions as a way of increasing one’s privacy. Our findings come
in direct antithesis with the advice given by Yen et al. [42], who suggest that
user-agent-spoofing extensions can be used, as a way of making tracking
harder. Even though their study focuses on common identifiers as reported
by client-side HTTP headers and the client’s IP address, a server capable
of viewing these can respond with JavaScript code that will uncover the
user-agent-spoofing extension, using any of the aforementioned techniques.

6.5 Discussion
Given the intrusive nature of web-based device fingerprinting and the current
inability of browser extensions to actually enhance a user’s privacy, in this
section, we first discuss possible ways of reducing a user’s fingerprintable
surface and then briefly describe alternative uses of fingerprinting which may
become more prevalent in the future.

6.5.1 Reducing the fingerprintable surface

Flash. As described in Section 6.1.1, Adobe Flash was utilized by all three
fingerprinting libraries that we studied, due to its rich API that allow SWF
files to access information not traditionally available through a browser’s
API. In all cases, the SWF file responsible for gathering information from
the host was hidden from the user, by either setting the width and height of
the <object> tag to zero, or placed into an iframe of zero height and width.
In other words, there was no visible change on the web page that included
the fingerprinting SWF files. This observation can be used as a first line of
defense. All modern browsers have extensions that disallow Flash and Sil-
verlight to be loaded until explicitly requested by the user (e.g., through a
click on the object itself). These hidden files cannot be clicked on and thus,
will never execute. While this is a straightforward solution that would effec-
tively stop the Flash-part of the fingerprint of all three studied companies, a
circumvention of this countermeasure is possible. By wrapping their finger-

28iatrogenic - Of or relating to illness caused by medical examination or treatment.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 150/158

printing code into an object of the first-party site and making that object de-
sirable or necessary for the page’s functionality, the fingerprinting companies
can still execute their code. This, however, requires much more integration
between a first-party website and a third-party fingerprinting company than
the current model of “one-size-fits-all” JavaScript and Flash.

In the long run, the best solution against fingerprinting through Flash
should come directly from Flash. In the past, researchers discovered that
Flash’s Local Shared Objects, i.e., Flash’s equivalent of browser cookies, were
not deleted when a user exited her browser’s private mode or even when she
used the “Clear Private Data” option of her browser’s UI [32]. As a result,
in the latest version of Flash, LSOs are not stored to disk but simply kept
in memory when the browser’s private mode is utilized [41]. Similarly, when
a browser enters private mode, Flash could provide less system information,
respect any browser-set HTTP proxies and possibly report only a standard
subset of a system’s fonts, to protect a user’s environment from fingerprinting.

JavaScript. There are multiple vendors involved in the development of
JavaScript engines, and every major browser is equipped with a different
engine. To unify the behavior of JavaScript under different browsers, all
vendors would need to agree not only on a single set of API calls to expose
to the web applications, but also to internal implementation specifics. For
example, hash table implementations may affect the order of objects in the
exposed data structures of JavaScript, something that can be used to finger-
print the engine’s type and version. Such a consensus is difficult to achieve
among all browser vendors, and we have seen diversions in the exposed APIs
of JavaScript even in the names of functions that offer the same functionality,
e.g., execScript and eval. Also, based on the fact that the vendors battle
for best performance of their JavaScript engines, they might be reluctant to
follow specific design choices that might affect performance.

At the same time, however, browsers could agree to sacrifice performance
when “private-mode” is enabled, where there could be an attempt to expose
a unified interface.

6.5.2 Alternative uses of fingerprinting

Although, in this paper, we have mostly focused on fingerprinting as a fraud-
detection and web-tracking mechanism, there is another aspect that requires
attention. Drive-by downloads and web attacks in general use fingerprinting
to understand if the browser that they are executing on is vulnerable to one
of the multiple available exploits. This way, the attackers can decide, at the
server-side, which exploit to reveal to the client, exposing as little as they can
of their attack capabilities. There are three different architectures to detect

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 151/158

drive-by downloads: low-interaction honeypots, high-interaction honeypots
and honeyclients. In all three cases, the browser is either a specially crafted
one, so that it can instrument the pages visited, or a browser installation
that was never used by a real user. Given the precise, browser-revealing,
fingerprinting techniques that we described in this paper, it is possible to see
in the future these mechanisms being used by attackers to detect monitoring
environments and circumvent detection.

6.6 Related Work
To the best of our knowledge, this paper is the first that attempts to study
the problem of web-based fingerprinting from the perspectives of all the
players involved, i.e., from the perspective of the fingerprinting providers
and their fingerprinting methods, the sites utilizing fingerprinting, the users
who employ privacy-preserving extensions to combat fingerprinting, and the
browser’s internals and how they relate to its identity.

Eckersley conducted the first large-scale study showing that various prop-
erties of a user’s browser and plugins can be combined to form a unique
fingerprint [10]. More precisely, Eckersley found that from about 500,000
users who visited panopticlick.eff.org and had Flash or Java enabled,
94.2% could be uniquely identified, i.e., there was no other user whose envi-
ronment produced the same fingerprint. His study, and surprisingly accurate
identification results, prompted us to investigate commercial fingerprinting
companies and their approach. Yen et al. [42] performed a fingerprinting
study, similar to Eckersley’s, by analyzing month-long logs of Bing and Hot-
mail. Interestingly, the authors utilize a client’s IP address as part of their
tracking mechanism, which Eckersley explicitly avoids dismissing it as “not
sufficiently stable.” As a way of protecting oneself, the authors advocated the
use of user-agent-spoofing extensions. As we discussed in Section 6.4, this
is actually counter-productive since it allows for more fingerprinting rather
than less.

Mowery et al. [24] proposed the use of benchmark execution time as
a way of fingerprinting JavaScript implementations, under the assumption
that specific versions of JavaScript engines will perform in a consistent way.
Each browser executes a set of predefined JavaScript benchmarks, and the
completion-time of each benchmark forms a part of the browser’s perfor-
mance signature. While their method correctly detects a browser-family
(e.g., Chrome) 98.2% of the time, it requires over three minutes to fully exe-
cute. According to a study conducted by Alenty [12], the average view-time
of a web page is 33 seconds. This means that, with high likelihood, the
benchmarks will not be able to completely execute and thus, a browser may

FP7-ICT-2009-5
Project No. 256964

panopticlick.eff.org

D4.3: Secure Composition Policies and Server-driven Enforcement 152/158

be misclassified. Moreover, the reported detection rate of more specific at-
tributes, such as the browser-version, operating system and architecture, is
significantly less accurate.

Mowery and Shacham later proposed the use of rendering text and We-
bGL scenes to a <canvas> element as another way of fingerprinting browsers [25].
Different browsers will display text and graphics in a different way, which,
however small, can be used to differentiate and track users between page
loads. While this method is significantly faster than the execution of browser
benchmarks, these technologies are only available in the latest versions of
modern browsers, thus they cannot be used to track users with older ver-
sions. Contrastingly, the fingerprinting techniques introduced in Section 6.3
can be used to differentiate browsers and their versions for any past version.

Olejnik et al. [28] show that web history can also be used as a way of
fingerprinting without the need of additional client-side state. The authors
make this observation by analyzing a corpus of data from when the CSS-
visited history bug was still present in browsers. Today, however, all modern
browsers have corrected this issue and thus, extraction of a user’s history is
not as straightforward, especially without user interaction [40]. Olejnik et al.
claim that large script providers, like Google, can use their near-ubiquitous
presence to extract a user’s history. While this is true [26], most users have
first-party relationships with Google, meaning that they can be tracked ac-
curately, without the need of resorting to history-based fingerprinting.

6.7 Conclusion
In this paper, we first investigated the real-life implementations of finger-
printing libraries, as deployed by three popular commercial companies. We
focused on their differences when compared to Panopticlick and discovered
increased use of Flash, backup solutions for when Flash is absent, broad use
of Internet Explorer’s special features, and the existence of intrusive system-
fingerprinting plugins.

Second, we created our own fingerprinting script, using multiple novel fea-
tures that mainly focused on the differences between special objects, like the
navigator and screen, as implemented and handled by different browsers.
We identified that each browser deviated from all the rest in a consistent
and measurable way, allowing scripts to almost instantaneously discover the
true nature of a browser, regardless of a browser’s attempts to hide it. To
this end, we also analyzed eleven popular user-agent spoofing extensions and
showed that, even without our newly proposed fingerprinting techniques, all
of them fall short of properly hiding a browser’s identity.

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 153/158

The purpose of our research was to demonstrate that when considering
device identification through fingerprinting, user-privacy is currently on the
losing side. Given the complexity of fully hiding the true nature of a browser,
we believe that this can be efficiently done only by the browser vendors. Re-
gardless of their complexity and sophistication, browser-plugins and exten-
sions will never be able to control everything that a browser vendor can. At
the same time, it is currently unclear whether browser vendors would desire
to hide the nature of their browsers, thus the discussion of web-based device
fingerprinting, its implications and possible countermeasures against it, must
start at a policy-making level in the same way that stateful user-tracking is
currently discussed.

References
[1] Opt out of being tracked. http://www.bluecava.com/preferences/.

[2] Adblock plus - for annoyance-free web surfing. http://adblockplus.
org.

[3] Aaron Andersen. History of the browser user-agent string. http://
webaim.org/blog/user-agent-string-history.

[4] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org/.

[5] Graham Cluley. How to turn off Java on your browser - and why you
should do it now. http://nakedsecurity.sophos.com/2012/08/30/
how-turn-off-java-browser/.

[6] Collusion: Discover who’s tracking you online. http://www.mozilla.
org/en-US/collusion/.

[7] comScore. The Impact of Cookie Deletion on Site-Server and Ad-Server
Metrics in Australia, January 2011.

[8] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and
analysis of drive-by-download attacks and malicious javascript code. In
Proceedings of the 19th International Conference on World Wide Web
(WWW), pages 281–290, 2010.

[9] Peter Eckersley. Panopticlick | Self-Defense. https://panopticlick.
eff.org/self-defense.php.

FP7-ICT-2009-5
Project No. 256964

http://www.bluecava.com/preferences/
http://adblockplus.org
http://adblockplus.org
http://webaim.org/blog/user-agent-string-history
http://webaim.org/blog/user-agent-string-history
http://anubis.iseclab.org/
http://nakedsecurity.sophos.com/2012/08/30/how-turn-off-java-browser/
http://nakedsecurity.sophos.com/2012/08/30/how-turn-off-java-browser/
http://www.mozilla.org/en-US/collusion/
http://www.mozilla.org/en-US/collusion/
https://panopticlick.eff.org/self-defense.php
https://panopticlick.eff.org/self-defense.php

D4.3: Secure Composition Policies and Server-driven Enforcement 154/158

[10] Peter Eckersley. How Unique Is Your Browser? In Proceedings of the
10th Privacy Enhancing Technologies Symposium (PETS), 2010.

[11] ECMAScript Language Specification, Standard ECMA-262, Third edi-
tion.

[12] Jean-Louis Gassée and Frederic Filloux. Measuring Time Spent On A
Web Page. http://www.cbsnews.com/2100-215_162-5037448.html.

[13] Ghostery. http:wwww.ghostery.com.

[14] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An
empirical study of privacy-violating information flows in JavaScript Web
applications. In Proceedings of CCS 2010, October 2010.

[15] Amit Klein. How Fraudsters are Disguising PCs to Fool
Device Fingerprinting. http://www.trusteer.com/blog/
how-fraudsters-are-disguising-pcs-fool-device-fingerprinting.

[16] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian
Seifert. Rozzle: De-cloaking internet malware. In IEEE Symposium on
Security and Privacy, May 2012.

[17] Brian Krebs. How to Unplug Java from the Browser. http://
krebsonsecurity.com/how-to-unplug-java-from-the-browser.

[18] Balachander Krishnamurthy. Privacy leakage on the Internet. presented
at IETF 77, March 2010.

[19] Balachander Krishnamurthy and Craig E. Wills. Generating a privacy
footprint on the Internet. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, IMC ’06, pages 65–70, New York,
NY, USA, 2006.

[20] Jonathan R. Mayer. Tracking the Trackers: Early Results | Center for
Internet and Society. http://cyberlaw.stanford.edu/node/6694.

[21] Jonathan R. Mayer. Any person... a pamphleteer. Senior Thesis, Stan-
ford University, 2009.

[22] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking:
Policy and technology. In IEEE Symposium on Security and Privacy,
pages 413–427, 2012.

FP7-ICT-2009-5
Project No. 256964

http://www.cbsnews.com/2100-215_162-5037448.html
http:wwww.ghostery.com
http://www.trusteer.com/blog/how-fraudsters-are-disguising-pcs-fool-device-fingerprinting
http://www.trusteer.com/blog/how-fraudsters-are-disguising-pcs-fool-device-fingerprinting
http://krebsonsecurity.com/how-to-unplug-java-from-the-browser
http://krebsonsecurity.com/how-to-unplug-java-from-the-browser
http://cyberlaw.stanford.edu/node/6694

D4.3: Secure Composition Policies and Server-driven Enforcement 155/158

[23] Elinor Mills. Device identification in online banking is privacy threat,
expert says. CNET News (April 2009).

[24] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Fin-
gerprinting information in JavaScript implementations. In Helen Wang,
editor, Proceedings of W2SP 2011. IEEE Computer Society, May 2011.

[25] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting can-
vas in HTML5. In Matt Fredrikson, editor, Proceedings of W2SP 2012.
IEEE Computer Society, May 2012.

[26] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van
Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Gio-
vanni Vigna. You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2012.

[27] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprinting. In IEEE Se-
curity and Privacy, 2013.

[28] Łukasz Olejnik, Claude Castelluccia, and Artur Janc. Why Johnny
Can’t Browse in Peace: On the Uniqueness of Web Browsing History
Patterns. In the 5th workshop on Hot Topics in Privacy Enhancing
Technologies (HOTPETS 2012).

[29] Greg Pierson and Jason DeHaan. Patent US20080040802 - NETWORK
SECURITY AND FRAUD DETECTION SYSTEM AND METHOD.

[30] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting
and defending against third-party tracking on the web. In NSDI’12:
Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, pages 12–12, Berkeley, CA, USA, 2012. USENIX
Association.

[31] Justin Scott. How many Firefox users have add-ons in-
stalled? 85%! https://blog.mozilla.org/addons/2011/06/21/
firefox-4-add-on-users/.

[32] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and
Chris Jay Hoofnagle. Flash Cookies and Privacy. In SSRN preprint
(August 2009).

FP7-ICT-2009-5
Project No. 256964

https://blog.mozilla.org/addons/2011/06/21/firefox-4-add-on-users/
https://blog.mozilla.org/addons/2011/06/21/firefox-4-add-on-users/

D4.3: Secure Composition Policies and Server-driven Enforcement 156/158

[33] The New York Times - John Schwartz. Giving the Web a Mem-
ory Cost Its Users Privacy. http://www.nytimes.com/2001/09/04/
technology/04COOK.html.

[34] The Wall Street Journal. What They Know. http://blogs.wsj.com/
wtk/.

[35] Torbutton: I can’t view videos on YouTube and other flash-based sites.
Why? https://www.torproject.org/torbutton/torbutton-faq.
html.en#noflash.

[36] Joseph Turow, Jennifer King, Chris Jay Hoofnagle, Amy Bleakley, and
Michael Hennessy. Americans Reject Tailored Advertising and Three
Activities that Enable It, 2009.

[37] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay, and
Yang Wang. Smart, useful, scary, creepy: perceptions of online behav-
ioral advertising. In Proceedings of the Eighth Symposium on Usable
Privacy and Security, SOUPS ’12, pages 4:1–4:15, New York, NY, USA,
2012. ACM.

[38] VirusTotal - Free Online Virus, Malware and URL Scanner. https:
//www.virustotal.com/.

[39] Web Tracking Protection. http://www.w3.org/Submission/2011/
SUBM-web-tracking-protection-20110224/.

[40] Zachary Weinberg, Eric Y. Chen, Pavithra Ramesh Jayaraman, and
Collin Jackson. I still know what you visited last summer: Leaking
browsing history via user interaction and side channel attacks. In Pro-
ceedings of the 2011 IEEE Symposium on Security and Privacy, SP ’11,
pages 147–161, 2011.

[41] Jimson Xu and Tom Nguyen. Private browsing and Flash
Player 10.1. http://www.adobe.com/devnet/flashplayer/articles/
privacy_mode_fp10_1.html.

[42] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin
Abadi. Host Fingerprinting and Tracking on the Web: Privacy and
Security Implications. In Proceddings of the 19th Annual Network and
Distributed System Security Symposium (NDSS), 2012.

[43] Michael Zalewski. The Tangled Web: A Guide to Securing Modern Web
Applications. No Starch Press, 2011.

FP7-ICT-2009-5
Project No. 256964

http://www.nytimes.com/2001/09/04/technology/04COOK.html
http://www.nytimes.com/2001/09/04/technology/04COOK.html
http://blogs.wsj.com/wtk/
http://blogs.wsj.com/wtk/
https://www.torproject.org/torbutton/torbutton-faq.html.en#noflash
https://www.torproject.org/torbutton/torbutton-faq.html.en#noflash
https://www.virustotal.com/
https://www.virustotal.com/
http://www.w3.org/Submission/2011/SUBM-web-tracking-protection-20110224/
http://www.w3.org/Submission/2011/SUBM-web-tracking-protection-20110224/
http://www.adobe.com/devnet/flashplayer/articles/privacy_mode_fp10_1.html
http://www.adobe.com/devnet/flashplayer/articles/privacy_mode_fp10_1.html

D4.3: Secure Composition Policies and Server-driven Enforcement 157/158

7 Conclusion
This deliverable has reported on how to express secure composition policies,
how to securely integrated third-party JavaScript in web applications, and
how to achieve this in a server-driven manner.

In particular, we explored the risks involved in integrating third-party
JavaScript, and discussed the server-driven enforcement mechanisms devel-
oped in work package 4 of the WebSand project.

First, the web security model was briefly discussed, as well as the impact
of this security model on integrating third-party JavaScript in a website.
The assessment of script inclusion on the top 10,000 most popular websites
illustrated the widespreadness of this type of code assembly on the web, and
the urge to securely compose JavaScript (Section 2).

We identified that 88.45% of the 10,000 web sites included at least one
remote JavaScript library, and there are even sites in the top Alexa list
that trust up to 295 remote hosts. Moreover, we discovered that one out of
four sites with high-maintenance scores include scripts from providers with
a low maintenance score, which are potential “weak spots” in their security
perimeter.

Next, we briefly summarized the set of security-sensitive operations, and
bundled them in nine logical categories as part of the least-privilege secure
composition policies. Finally, this deliverable also investigated how the rich-
ness of JavaScript APIs not only affects the security but also the privacy of
end-users in web fingerprinting frameworks (Section 6).

A variety of enforcement techniques have been developed within WebSand
to securely compose JavaScript. These enforcement techniques range from a
security-enhanced browser (WebJail) to a JavaScript security architectures
that runs on top of mainstream browsers (Two-tier sandbox , JSand and
PreparedJS). All implementation strategies have reported successful isolation
of third-party JavaScript. They mainly vary in their mode of deployment, but
also make different trade-offs in terms of legacy support, precision, efficiency
and maintainability.

WebJail (reported in Deliverable D4.1 and D4.2) focuses on the secure
integration of third-party frames and realizes this enforcement by mediating
access to security-sensitive operations in the browser core. The other three
prototype focuses on the secure integration of scripts, and test the feasibility
to realize this enforcement without (major) client-side modifications.

The two-tier sandbox architecture (Section 3) allows to apply application-
specific, stateful fine-grained policies. By combining the fine-grained enforce-
ment mechanism with a more coarse-grained outer sandbox, the technique
ensure a baseline protection in case the policy writer mistakenly introduces

FP7-ICT-2009-5
Project No. 256964

D4.3: Secure Composition Policies and Server-driven Enforcement 158/158

vulnerabilities while expressing the fine-grained policies.
The JSand approach (Section 4) is more focused towards the enforcement

of the least-privilege composition policy, which tends to be a good balance
between the fine-grained policies of the two-tier sandbox approach and the
very coarse-grained policies of the Same Origin Policy and the Content Se-
curity Policy.

PreparedJS (Section 5) enriches the Content Security Policy model, both
in terms of usability for the web developer, and security towards white-listing
the intended third-party scripts. This latter technique provides an additional
layer of protection on top of the mechanisms specified above, to protect
websites against trusted scripts and script providers that get compromised
over time.

We selected JSand as most promising technique for the server-driven en-
forcement. To this extent, we have further matured the JSand prototype
implementation to support a representative selection of DOM operations,
and applied it to the most frequently used third-party scripts.

The server-driven enforcement is successfully realized and works as fol-
lows. First a set of secure composition policies is expressed by the website
owner or the security officer in charge. The least-privilege composition policy
expresses for each of the nine categories whether or not scripts should have
access to these security-relevant operations. Next, a sandbox environment
is configured as part of the web application, by selecting the appropriate
secure composition policy and the code that needs to be executed as part of
the sandbox. Both of these steps are part of the development or deployment
of the web application.

During execution, the client-side code to set up the security architecture
and the secure composition policy are pushed towards the browser as part of
the web page. Before loading the third-party JavaScript code, the JavaScript
security architecture is set up, and a script-specific sandbox environment is
created based on the provided secure composition policy. Once fully config-
ured, the third-party JavaScript code is loaded in the sandbox environment
and executed.

FP7-ICT-2009-5
Project No. 256964

	Introduction
	Web security model
	Integration of scripts
	JavaScript inclusions: assessing the state of practice

	Secure composition policies
	Enforcing secure composition policies
	WebJail
	Two-tier sandbox
	JSand
	PreparedJS

	Server-driven policy enforcement
	Selection of the policy enforcement implementation
	Server-drive enforcement architecture
	Server-driven enforcement with JSand

	Overview of this deliverable

	You Are What You Include: Large-scale Evaluation of Remote JavaScript InclusionsThis paper has been published as KULeuven-354587: Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, You are what you include: Large-scale evaluation of remote JavaScript inclusions, Proceedings of the 19th ACM conference on Computer and Communications Security (CCS 2012), pages 736-747, Raleigh, NC, USA, 16-18 October 2012For KU Leuven, this research was done with the financial support from the Prevention against Crime Programme of the European Union, the IBBT, the Research Fund KU Leuven, and the EU-funded FP7 projects NESSoS and WebSand. For UCSB, this work was supported by the Office of Naval Research (ONR) under Grant N000140911042, the National Science Foundation (NSF) under grants CNS-0845559 and CNS-0905537.
	Introduction
	Data Collection
	Discovering remote JavaScript inclusions
	Crawling Results

	Characterization of JavaScript Providers and Includers
	Evolution of remote JavaScript Inclusions
	Quality of Maintenance Metric
	Risk of Including Third-Party Providers

	Attacks
	Cross-user and Cross-network Scripting
	Stale Domain-name-based Inclusions
	Stale IP-address-based Inclusions
	Typosquatting Cross-site Scripting (TXSS)

	Countermeasures
	Sandboxing remote scripts
	Using local copies

	Related Work
	Conclusion

	A Two-Tier Sandbox Architecture for Untrusted JavaScriptThis paper has been published as KULeuven-355785: Phu H. Phung, Lieven Desmet, A two-tier sandbox architecture for untrusted JavaScript, Proceedings of the Workshop on JavaScript Tools (JSTools '12), pages 1-10, Beijing, China, 13 June 2012 This research is funded by the EU FP7 WebSand project. Thanks to David Sands and Andrei Sabelfeld for their feedback and helpful comments. Part of this work was performed while the first author was visiting Stanford hosted by John Mitchell. The first author would like to thank John Mitchell, Ankur Taly, and Mark Miller for their discussions. For the second author, this work was also partially funded by the EU FP7 NESSoS project, the Interuniversity Attraction Poles Programme Belgian State, Belgian Science Policy, and by the Research Fund KU Leuven.
	Introduction
	Problem statement
	Two-tier sandbox architecture
	Prototype implementation
	The Secure ECMAScript 5 sandbox library (SES)
	The two-tier sandbox architecture prototype
	Tamper-proofing Arguments

	Fine-grained Policy Definition and Enforcement
	Policy Definition
	Enforcement Method

	Validation
	Related work
	Discussion and future work

	JSand: Complete Client-Side Sandboxing of Third-Party JavaScript without Browser ModificationsThis paper has been published as KULeuven-360451: Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet, Frank Piessens, JSand: Complete client-side sandboxing of third-party JavaScript without browser modifications, Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC 2012), pages 1-10, Orlando, Florida, USA, 3-7 December 2012This research is partially funded by the Research Fund KU Leuven, the EU-funded FP7 projects NESSoS and WebSand and by the IWT-SBO project SPION. Pieter Agten holds a Ph.D. fellowship of the Research Foundation - Flanders (FWO). With the financial support from the Prevention of and Fight against Crime Programme of the European Union European Commission - Directorate-General Home Affairs.
	Introduction
	Problem statement
	Integrating third-party JavaScript
	Malicious script inclusion
	Requirements

	JSand security architecture
	Architectural overview
	Under the hood

	Prototype implementation
	Object-capability system
	Policy-enforcing membranes
	Security policies
	Wrapping the DOM
	Dynamic script loading support
	Support for legacy scripts

	Evaluation
	Complete mediation
	Backwards compatibility
	Performance benchmarks

	Related work
	Conclusion

	PreparedJS: Secure Script-Templates for JavaScriptThis paper has been published as Johns2013a: Martin Johns: PreparedJS: Secure Script-Templates for JavaScript, Proceedings of the 10th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA '13), Berlin, Germany, July 2013
	Introduction
	Motivation

	Technical background
	Cross-site Scripting (XSS)
	Content Security Policies (CSP)

	CSP's remaining weaknesses
	Weakness 1: Insecure server-side assembly of JavaScript code
	Weakness 2: Full control over external, whitelisted scripts
	Weakness 3: Injection of further script-tags
	CSP 1.1's script-nonce directive
	Analysis

	Goal: Stable Cryptographic Checksums for Scripts
	PreparedJS
	JavaScript templates for static server-side scripts
	Code legitimacy checking via script checksums
	Extended CSP Syntax
	PreparedJS-aware script tags
	Summary: The three stages of PreparedJS

	Implementation and enforcement
	Native, browser-based implementation
	Transparently providing legacy support

	Discussion
	Security evaluation
	Cost of adoption

	Related work
	Conclusion

	Cookieless Monster: Exploring the Ecosystem of Web-based Device FingerprintingThis paper has been published as KULeuven-393661: Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna, Cookieless monster: Exploring the ecosystem of web-based device fingerprinting, IEEE Security and Privacy, San Francisco, 19-22 May 2013For KU Leuven, this research was performed with the financial support of the Prevention against Crime Programme of the European Union (B-CCENTRE), the Research Fund KU Leuven, the EU FP7 projects NESSoS and WebSand, as well as the IWT project SPION. For UCSB, this work was supported by the Office of Naval Research (ONR) under grant N000140911042, and by the National Science Foundation (NSF) under grants CNS-0845559 and CNS-0905537, and in part by Secure Business Austria.
	Introduction
	Commercial Fingerprinting
	Fingerprinting through popular plugins
	Vendor-specific fingerprinting
	Detection of fonts
	Detection of HTTP Proxies
	System-fingerprinting plugins
	Fingerprint Delivery Mechanism
	Analysis Limitations

	Adoption of fingerprinting
	Adoption on the popular web
	Adoption by other sites

	Fingerprinting the behavior of special objects
	Experimental Fingerprinting Setup
	Results
	Summary

	Analysis of User-Agent-Spoofing Extensions
	Discussion
	Reducing the fingerprintable surface
	Alternative uses of fingerprinting

	Related Work
	Conclusion

	Conclusion

